PaperCo	de· ICT10	1	Paper	Program	ming for I	Problem	Solving				L	Г/Р	С	
PaperID:		-	Taper.	Tiogram							3 .		3	
Marking Scheme:														
0	0													
2.	2. Term end Theory Examinations: 75 marks													
	Instruction for paper setter:													
1. Ther	1. There should be 9 questions in the term end examinations question paper.													
2. The f	first (1 st) question should be compulsory and cover the entire syllabus. This question should be objective, single													
line a	answers or short answer type question of total 15 marks.													
	art from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit													
	all have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to													
	ttempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions.													
	ach Unit shall have a marks weightage of 15.													
	questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of													
	e questions to be asked should be at the level of the prescribed textbook.													
	 The requirement of (scientific) calculators / log-tables / data – tables may be specified if required. Course Objectives: 													
	· ·													
1:	To impart basic knowledge about simple algorithms for arithmetic and logical problems so that students									s can				
2:	understand how to write a program, syntax and logical errors in 'C'.													
3:	Š Š									ithm	and			
5.	3: To impart knowledge about using arrays, pointers, files, union and structures to develop a programs in 'C'.								h aigni		s anu			
4:										e nro	hlem			
4.	in 'C'.													
Course Outcomes (CO):														
CO1:														
CO2:	Ability to implement conditional branching, iteration and recursion and functions in 'C'													
CO3:	Ability to use arrays, pointers, union and structures to develop algorithms and programs in 'C'.													
CO4:	Ability to decompose a problem into functions and synthesize a complete program using divide and conquer													
	approach in 'C'.													
Course Outcomes (CO) to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High)														
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	, PO08	PO09	PO10	PO11	P	PO12	
CO1	3	3	2	1	1	-	-	-	2	1	1		3	
CO2	3	3	2	1	1	-	-	-	2	1	1		3	
СО3	3	3	3	1	1	-	-	-	2	1	1		3	
CO4	3	3	3	1	1	-	-	-	2	1	1		3	

Unit I

Introduction to Programming: Computer system, components of a computer system, computing environments, computer languages, creating and running programs, Preprocessor, Compilation process, role of linker, idea of invocation and execution of a programme. Algorithms: Representation using flowcharts, pseudocode.

Introduction to C language: History of C, basic structure of C programs, process of compiling and running a C program, C tokens, keywords, identifiers, constants, strings, special symbols, variables, data types, I/O statements. Interconversion of variables.

Operators and expressions: Operators, arithmetic, relational and logical, assignment operators, increment and decrement operators, bitwise and conditional operators, special operators, operator precedence and associativity, evaluation of expressions, type conversions in expressions. [10Hrs]

Unit II

Control structures: Decision statements; if and switch statement; Loop control statements: while, for and do while loops, jump statements, break, continue, goto statements.

Arrays: Concepts, One dimensional array, declaration and initialization of one dimensional arrays, two dimensional arrays, initialization and accessing, multi dimensional arrays.

Functions: User defined and built-in Functions, storage classes, Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference, Recursion.

Strings: Arrays of characters, variable length character strings, inputting character strings, character library functions, string handling functions. [10Hrs]

Unit III

Pointers: Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, functions returning pointers, Dynamic memory allocation. Pointers to functions. Pointers and Strings

Structures and unions: Structure definition, initialization, accessing structures, nested structures, arrays of structures, structures and functions, self referential structures, unions, typedef, enumerations.

File handling: command line arguments, File modes, basic file operations read, write and append. Scope and life of variables, multi-file programming.

C99 extensions. 'C' Standard Libraries: stdio.h, stdlib.h, assert.h, math.h, time.h, ctype.h, setjmp.h, string.h, stdarg.h, unistd.h [10Hrs]

Unit IV

Basic Algorithms: Finding Factorial, Fibonacci series, Searching, Basic Sorting Algorithms- Bubble sort, Insertion sort and Selection sort. Find the square root of a number, array order reversal, reversal of a string, two-way merge sort, stacks, queues, single –link linked list, Binary search tree. [10Hrs]

Textbooks:

- 1. How to solve it by Computer by R. G. Dromey, Prentice-Hall India EEE Series, 1982.
- 2. The C programming language by B W Kernighan and D M Ritchie, Pearson Education, 1988.

References:

- 1. *Programming Logic & Design* by Tony Gaddis, Pearson, 2nd Ed. 2016.
- 2. Programming Logic and Design by Joyce Farrell, Cengage Learning, 2015.
- 3. Engineering Problem Solving With C by Delores M. Etter, Pearson, 2013.
- 4. Problem Solving and Program Design in C by Jeri R. Hanly and Elliot B. Koffman, Pearson, 2016.
- 5. *Structure and Interpretation of Computer Programs* by Harold Abelson and Gerald Sussman with Julie Sussman, MIT Press, 1985.
- 6. *How to Design Programs* by Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi, MIT Press, 2018.
- 7. ANSI/ISO 9899-1990, American National Standard for Programming Languages 'C' by American National Standards Institute, Information Technology Industry Council, 1990 (C89).
- 8. ISO/IEC 9899:1999. International Standard for Programming Languages C (ISO/IEC 9899) by American National Standards Institute, Information Technology Industry Council, 2000 (C99).
- 9. INCITS/ISO/IEC 9899-2011.American National Standard for Programming Languages 'C'by American National Standards Institute, Information Technology Industry Council, 2012 (C11).