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Chapter 1

Introduction to R-Software

Mr. Prashant Shah, Associate Professor and Head, Department of Statistics,
K. ]. Somaiya College of Science and Commerce, Vidyavihar, Mumbai.

1.1 R as a programming language

While R is perhaps best known as a statistical tool for analyzing data or for making graphs,
it is also really useful as a simple programming language and compiler. In R, a program is
just any group of commands that you wish to run as a set, to achieve some output.

1.1.1 Using Text Editors and ".R" Files in R

By using a text editor, we can write whole groups of commands and have the computer run
them separately or all together. Further, text editors allow you to save your program for later
use.

There are three different types of windows that are used by R: console, graphics, and text
editor windows. The window where you enter line commands is the R Console. When you
used the "plot" command, it opened a new window, which is the graphics window. Text
editor windows are just simple text editors that are smart enough to interact with R.

On a PC, go to "File" and open "New script". To execute commands, either highlights the
command(s) or put the cursor anywhere on that line and push the button in upper corner of
the main R window for "Run line or selection."

Creating a new document (or script) opens a simple text editor in R. You can then enter
multiple lines of commands that are not executed until you are ready. And, instead of
executing commands one by one, you can execute them all at once or any set of them
together. You can also save the file (usually as a “___.R” file) and rerun these commands at a
later time.

1.2 What is Statistics?

The subject of statistics deals with
e Collection of data. e Analysis of data.
e Presentation or organization of data. e Interpretation of, results of, analysis of data.
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1.3 What is Data?

A set of numerical or other measured values
For Eg. 1. Salaries of employees.
2. Export (Rs. in crore) of a company during 2010 to 2015.
3. Daily credit/debit transactions in bank.
4, Carbon dioxide content in the air, in different regions during different
seasons.
5. Patient’s disease history in hospitals.

To analyse voluminous data, a number of statistical software are available such as
e R-software
e SAS (Statistical Analysis System)
e SPSS (Statistical Package for the Social Sciences)
e Minitab

R is the most comprehensive statistical analysis package available. It incorporates all of the
standard statistical tests, models, and analyses, as well as providing a comprehensive
language for managing and manipulating data. R is free and open source software, allowing
anyone to use and, importantly, to modify it.

1.4 R commands, case sensitivity

Technically R is an expression language with a very simple syntax. It is case sensitive, so A
and a are different symbols and would refer to different variables.

Elementary commands consist of either expressions or assignments. If an expression is given
as a command, it is evaluated, printed (unless specifically made invisible), and the value is
lost.

An assignment also evaluates an expression and passes the value to a variable but the result
is not automatically printed.

Commands are separated either by a semi-colon (‘;’), or by a newline. Elementary commands
can be grouped together into one compound expression by braces (‘{" and }').

Comments can be put almost anywhere, starting with a hashmark (‘#’), everything to the end
of the line is a comment.

If a command is not complete at the end of a line, R will give a different prompt, by default +
on second and subsequent lines and continue to read input until the command is
syntactically complete.
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1.5 R-Commands to input data

a) Assignment Statement

[ J = 0r<-

b) Creating vectors
e ()
e scan()

c) Generating sequences
o
* seq()
e seq(from=a,to=b,by=c)
e seq(length=d, from = a, by =)
d) Replicating objects or elements
e rep()

1.6 Simple manipulations; numbers and vectors

1.6.1 Assignment:

An assignment means naming a value, so that it can be used later. Assignment has general
form

Variable = expression or value ( = is an assignment operator)
>x =2+ 3 # x is assigned value 5

> X
[1] 5

> X + 2

[1] 7

> X =Xx *3

> X

[1] 15

>x=2+3;y=-4; z=x *y # Commands are separated by a semi-colon (‘;")
> X; Y, Z

[1] 5

[1] -4

[1] -20

-4; z=x *y; X;y; 2 # Commands are separated by a semi-

colon (“;")

>Xx=2+3;y

[1] 5
[1] -4
[1] -20

1.6.2 Vectors

R operates on named data structures. The simplest such structure is the numeric vector,
which is a single entity consisting of an ordered collection of numbers. To set up a vector
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named X, say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R
command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

This is an assignment statement using the function c() which in this context can take an
arbitrary number of vector arguments (c stands for “combine.”). The idea is that a list of
numbers is stored under a given name, and the name is used to refer to the data. The
numbers within the ¢ command are separated by commas. A list is specified with the c
command, and assignment is specified with the “<-” symbols. Notice that the assignment
operator (‘<-"), which consists of the two characters ‘<’ (“less than”) and ‘-’ (“minus”

occurring strictly side-by-side and it ‘points’ to the object receiving the value of the
expression. A number occurring by itself in an expression is taken as a vector of length one.

If an expression is used as a complete command, the value is printed and lost. So now if we
were to use the command

> 1/x

the reciprocals of the five values would be printed at the terminal (and the value of x, of
course, unchanged).

The further assignment

>b <- c(x, 0, x)

would create a vector b with 11 entries consisting of two copies of x with a zero in the middle
place.

“w_n”n

To see what numbers is included in x type “x” and press the enter key:
> X <- c(10.4, 5.6, 3.1, 6.4, 21.7)

> X

[1] 10.4 5.6 3.1 6.4 21.7

> typeof(x)

[1] "double"

1.6.3 Accessing vectors:

Individual elements of a vector can be accessed by using indices.
> X <- c(10.4, 5.6, 3.1, 6.4, 21.7)

> x[3] # third element of vector x is accessed.

[1] 3.1

> x[1] # first element of vector x is accessed.

[1] 10.4

> x[2 : 4] # elements from second to fourth of vector x are accessed.
[1] 5.6 3.1 6.4

> x[c(2,5)] # elements having indices 2 and 5 are accessed.

[1] 5.6 21.7

> length(x) # displays number of elements in vector x.

[1] 5

> x[3 : length(x)] # elements having indices 3 to 5 of vector x

are accessed.
[1] 3.1 6.4 21.7
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> x[4 : 2] # elements from fourth to second reversely of vector x are
accessed.

[1] 6.4 3.1 5.6

> x[0]

numeric(0)

> x[6]

[1] NA

> x[x > 6] # elements of vector x having value > 6 are accessed.

[1] 10.4 6.4 21.7

> x[x < 6] # elements of vector x having value < 6 are accessed.

[1] 5.6 3.1

Subset command can also be used with vectors.

> q = subset(x, x > 6)

>q

[1] 10.4 6.4 21.7

> p = subset(x, x < 6)

>p

[1] 5.6 3.1

> which (x < 6) # displays index of elements of vector x whose value is < 6.
[1] 2 3

> x[-1] # elements except first are accessed.

[1] 5.6 3.1 6.4 21.7

> x[c(-2,-5)] # elements except second and fifth are accessed or x[-c(2,5)]
[1] 10.4 3.1 6.4

> x[-2 : -4] # elements except second to fourth are accessed.

[1] 10.4 21.7

>X <6

[1] FALSE TRUE TRUE FALSE FALSE
Notice that the first entry is referred to as the number 1 entry and the zero entry can be

used to indicate how the computer will treat the data.
> 1/x
[1] 0.09615385 0.17857143 0.32258065 0.15625000 0.04608295
> X
[1] 16.4 5.6 3.1 6.4 21.7
>b <- c(x, 0, x)
> b
[1] 10.4 5.6 3.1 6.4 21.7 0.0 10.4 5.6 3.1 6.4 21.7
You can store strings using both single and double quotes.
> t <- c("somaiya", "mumbai", 'new delhi')
>t
[1] "somaiya" "mumbai” "new delhi"
> typeof(t)
[1] "character"

1.6.4 Alternative way to create data vectors

Vectors can be created and data can be entered alternatively by using scan function.
> x = scan()

1: 3 -57

4: 9 0 6.7
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7: -2

8:

Read 7 items

> X

[1] 3.0 -5.0 7.0 9.0 0.0 6.7 -2.0
>y = scan()

1: 258 4 -2

6: 95

8:

Read 7 items

>y

[1] 2 5 8 4 -2 9 5

scan() function has many other arguments such as what, nmax etc
e what: This argument indicates types of data to be accepted, by default it is
numeric. For character data type set what = “character”

e nmax: This argument indicates maximum number of elements to be accepted.
> t = scan(what = "character")

1: "somaiya" "vidyavihar"

3:

Read 2 items

> t

[1] "somaiya" "vidyavihar"

> X = scan(nmax = 4)
1: 5 -83 92 -11 6
Read 4 items

> X

[1] 5 -8 3 9

1.6.4 Vector arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed
element by element.

The elementary arithmetic operators are the usual +, -, *, / and * for raising to a power. In
addition, several mathematical and statistical functions are also available in R for arithmetic
operations. For eg.: log, log10, sort, min, max, range, length, exp, sin, cos, tan, sqrt, and so on,
all have their usual meaning.

Vectors are mathematical objects. Standard arithmetic functions and operators apply to
vectors on element wise basis.

While applying simple arithmetic functions and operators to vectors proper care should be
taken. If the operands are of different lengths then shorter of the two is extended by
repetition. However, if the length of the longer is not multiple of length of shorter then
warning message is displayed.

> ¢c(1,5,2,3) + c(1,3)

[1] 2 8 36
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> c(1,5,2) + c(1,3)

[1] 2 8 3

Warning message:

In c(1, 5, 2) + c(1, 3)

longer object length is not a multiple of shorter object length

1.7 Generating regular sequences

R has a number of facilities for generating commonly used sequences of numbers. For
example 12:20 is the vector c(12, 13, .., 20). The colon operator has high priority within an
expression, so, for example 2*12:20 is the vector c(24, 26, ..., 40). Put n <- 8 and compare the
sequences 1:n-1 and 1:(n-1).

> 12:20

[1] 12 13 14 15 16 17 18 19 20
> p <- 12:20

> p

[1] 12 13 14 15 16 17 18 19 20
> g <- 3*12:20

> q

[1] 36 39 42 45 48 51 54 57 60
>n=38

>t <- 5:(n-1)

> t

[1] 56 7

>w <- 5:n -1

> w

[1] 4 56 7

The construction 20:12 may be used to generate a sequence backwards.
> 20:12

[1] 20 19 18 17 16 15 14 13 12

The function seq() is a more general facility for generating sequences. It has five arguments,
only some of which may be specified in any one call. The first two arguments, if given, specify
the beginning and end of the sequence, and if these are the only two arguments given the
result is the same as the colon operator. That is seq(12,20) is the same vector as 12:20.

Parameters to seq(), and to many other R functions, can also be given in named form, in
which case the order in which they appear is irrelevant. The first two parameters may be
named from=value and to=value; thus seq(12,20), seq(from=12, to=20) and seq(to=20,
from=12) are all the same as 12:20. The next two parameters to seq() may be named
by=value and length=value, which specify a step size and a length for the sequence
respectively. If neither of these is given, the default by=1 is assumed.

For example
> seq(-5, 5, by=.2) -> s3
> s3
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[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -
2.2

[16] -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.8

[31] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
3.8

[46] 4.0 4.2 4.4 4.6 4.8 5.0

Similarly following command generates a sequence of 18 elements

> s4 <- seq(length=18, from=-5, by=.2)

> s4

[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -
2.2

[16] -2.0 -1.8 -1.6

rep() which can be used for replicating an object in various complicated ways. The simplest
form is s5 <- rep(x, times=5) which will put five copies of x end-to-end in s5.

> X

[1] 305 16 122 68

> s5 <- rep(x, times=5)

> s5

[1] 365 16 122 68 305 16 122 68 305 16 122 68 305 16 122 68 305 16
122

[20] 68

Another useful version is s6 <- rep(x, each=5) which repeats each element of x five times

before moving on to the next.

> s6 <- rep(x, each=5)

> s6

[1] 365 305 305 305 305 16 16 16 16 16 122 122 122 122 122 68 68 68
68

[20] 68

> s7 <- rep(l1l:4,c(2,1,2,1))

> s7

[1] 112334

1.8 Matrix Operation

To form a matrix you can use following syntax.
matrix(data =, nrow =, ncol= ,byrow="FALSE").

data : Actual data may be written in any of the variable or values by using function
c().

nrow : Number of rows of a matrix

ncol :  Number of columns of a matrix

byrow : Itspecifies whether matrix values are filled row wise or column wise.

FALSE is by default i.e. column wise. If you want row wise then use
TRUE.
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For example,
>a<-c(1,2,3,4,5,6,7,8,9,10,11,12)
> A <- matrix(data=a, nrow=3, ncol=4, byrow="TRUE")

> a
[1]1 123456789 10 11 12
> A

[,11 [,21 [,31 [,4]
,] 1 2 3
,1 5 6 7 8
[3,1 9 10 11 12

Specific values in a vector or in a matrix are referenced using square brackets ([ ]). For

example,

> x <- ¢(5,8,9,7,6)

> X

[1] 58976

> x[21]

[1] 8

> A[2,4]

[1] 8

> A[3,]

[1] 9 10 11 12

> Alc(2,3),1] #display 2" and 3rd element of the first column of matrix A
[1] 59

> Alc(2,3),2]

[1] 6 10 #display 2" and 3 element of the second column of matrix A

Matrix operators are provided in the Table
Table 2: Matrix Operations

Operation or I
Function Description
A*B Element-wise multiplication
A %*% B Matrix multiplication
t(A) Transpose
diag(x) Creates diagonal matrix with elements of x in the principal diagonal
diag(A) Returns a vector containing the elements of the principal diagonal
diag(k) If k is a scalar, this creates a k x k identity matrix.
solve(A,b) Returns vector x in the equation b = Ax
solve(A) Inverse of A where A is a square matrix.
. Moore-Penrose Generalized Inverse of A. it requires loading the MASS
ginv(A)
package.
y <—qr(A)$rank [rank is the rank of A.
cbind(A,B,...) Combine matrices(vectors) horizontally. Returns a matrix.
rbind(A,B,...) Combine matrices(vectors) vertically. Returns a matrix.
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1.9 Some commonly used Built-in functions

> x <- ¢c(-6,9,0,-3,8,2,-5,4)

> X
[1] -6 9 O -3 8 2 -5 4

> length(x) #Displays the number of elements of vector x
[1] 8

> max(x) #displays the maximum element of vector x

[1] 9

> min(x) #displays the minimum element of vector x

[1] -6

> range(x) #displays the range of the values of vector x
[1] -6 9

> sum(x) # displays sum of the values of vector x

[1] 9

> cumsum(x) # displays the cumulative sum of the values of vector x
[1] -6 3 3 0 810 5 9

> mean(x) # displays the mean of the values of vector x
[1] 1.125

> median(x) # displays the median of the values of vector x
[1] 1

> sort(x) # Sort the values of vector x in the increasing order
[1] -6 -5 -3 06 2 4 8 9

> sort(x, decreasing = T) # Sort the values of vector x in the decreasing
order

[1] 9 8 4 2 0 -3 -5 -6

> var(x) # Sample variance with denominator (n-1)

[1] 32.125

> which(x == 4) # displays index of the required element of vector x

[1] 8

>y <- c(3,4,-5)

> prod(y) # displays product of the values of vector y

[1] -60

round( ): Syntax for the function is round(object, digits)

This function rounds object upto digits decimals. For example,
> round(3.2156,3)
[1] 3.216

1.10 Data frames

Data frames can be created by using data.frame. A data frame may be regarded as a matrix.
[t may be displayed in matrix form, and its rows and columns extracted using matrix indexing
conventions. Itis a list of vectors of the same length. (If the vectors included in the data frame
are not of the same length then vector having less elements is recycled a whole number of
times)

> x <- ¢(-5,7,-3,8); y = 8:11; z = rep(-5,4); p = seq(1,12,3)

>q = c(1,5)

>r = 5:7

> X;¥;Z;piq;r

[1] -5 7 -3 8
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[1] 8 9 10 11

[1] -5 -5 -5 -5

[1] 1 4 7 10

[1] 1 5

[1] 56 7

> dl = data.frame(x,y)

> dl

X y

1 -5 8
2 7 9
3 -3 10
4 8 11

First column indicates row numbers.
> d2 = data.frame(q,p)

> d2
q p
1 1 1
2 5 4
3 1 7
4 5 10

In this data frame d2 vector having fewer elements (i.e. vector q) is recycled a whole number
of times (2 times, so that its length becomes as that of length of other vector p)

Different columns in data frame are vectors. Names can be given to these columns while
creating data frames.

> d4 = data.frame("maths" = x, "stats" = y)

> d4
maths stats
1 -5 8
2 7 9
3 -3 10
4 8 11

Rows in data frames can be given names using row.names which is a vector of character
strings indicating names of rows.

> d5 = data.frame("maths" = x, "stats" =y, row.names = c("Amit", "Vidya",
"Ganesh", "Tina"))
> db5
maths stats
Amit -5 8
Vidya 7 9
Ganesh -3 10
Tina 8 11

1.11 Accessing data from data frames

Data from data frame can be accessed using $ notation
> d5 $ maths
[1] -5 7 -3 8
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> d5 $ maths[3]
[1] -3

> d5[4,2]

[1] 11

1.12 Inbuilt data sets or Resident data sets

The data sets that come with R or one of the packages are known as Inbuilt data sets. To

view all Inbuilt data sets names from package ‘datasets’ use following command.
> data()

For accessing existing data sets, command is as follows

> data(data set name)

> data(co2)

> co2 # displays data set co2

Note: Data frame can also be created using in-built data editor edit similar
to MS-Excel.

> stud <- edit(data.frame()) #this command displays in-built spread sheet.

> stud

varl var2
1 fybsc 45
2 fybsc 50
3 sybsc 55
4 msc 60
> names(stud) <- c("Standard","Marks")
> stud
Standard Marks
1 fybsc 45
2 fybsc 50
3 sybsc 55
4 msc 60

1.13 Importing Data from Excel

The function read.table() is the easiest way to import data into R. The preferred raw data
format is either a tab delimited or a comma-separate file (CSV).

Working directory can be checked using getwd().

Store the excel file in csv format in this working directory.

> dl <- read.table("templ.csv",6 header=TRUE, sep=",")
# This creates dataframe dl

> dl

Roll.No Name Marks
1 21 fgdgf 45
2 22 wgeq 78
3 23 ZXCVZ 60
4 25 jk1jl 47
> dm = as.matrix(exp)
> dm
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[1,]
[2,]
[3,]
[(4,]

Item

"Food"

"Rent"
"Electricity"
"Misc."

Ramesh
"1600"
"1500"
"1000"

900"
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Ganesh
"1200"
"2000"
"1500"
"3000"
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Chapter 2

Graphs and Diagram

Mr. Prashant Shah, Associate Professor and Head, Department of Statistics,
K. ]. Somaiya College of Science and Commerce, Vidyavihar, Mumbai.

2.1 Introdution

Statistical data can be represented in the form of diagrams such as
e Simple bar diagram
e Multiple bar diagram
e Subdivided bar diagram
e Pie diagram or pie chart

2.2 Bar Diagrams

> barplot(height, beside = T, names.arg = NULL, col = NULL, border =
par("fg"), main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim =
NULL,...)

height: Either a vector or matrix of values describing the bars which make up the plot. If
height is a vector, the plot consists of a sequence of rectangular bars with heights given by
the values in the vector. If height is a matrix and beside is FALSE then each bar of the plot
corresponds to a column of height, with the values in the column giving the heights of stacked
sub-bars making up the bar. If height is a matrix and beside is TRUE, then the values in each
column are juxtaposed rather than stacked.

names.arg: A vector of names to be plotted below each bar or group of bars. If this argument
is omitted, then the names are taken from the names attribute of height if this is a vector, or
the column names if it is a matrix.

main: Overall title for the plot.

beside: A logical value. If FALSE, the columns of height are portrayed as stacked bars, and if
TRUE the columns are portrayed as juxtaposed bars (adjoining or contiguous bars)
Example: The following table gives the average approximate yield of rice in kg. per acre in
various states of India in 2003-04. Represent it by Simple Bar diagram.

State: | Punjab | Haryana | U.P. Gujarat | Bihar | Karnataka

Yield: | 728 943 1469 | 2903 2153 | 2276

> X <- c("Punjab", "Haryana", "U.P.", "Gujarat", "Bihar", "Karnataka")
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>y <- c(728, 943, 1469, 2903, 2153, 2276)

> X

[1] "Punjab" "Haryana" "U.p." "Gujarat" "Bihar" "Karnataka"
>y

[1] 728 943 1469 2903 2153 2276

> barplot(y, names.arg = x, col = "red", border = "blue", main = "Yield of rice
in kg. per acre in various states of India", xlab = "States", ylab = "Yield")

Yield of rice in kg. per acre in various states of India

o 4

Punjab Haryana P. Gujarat  Bihar Karnataka

1500 2000 2500
I ]

Yield

1000

50

States

Example: Represent the following data on faculty-wise distribution of students, by multiple
bar diagram.

College Arts Science Commerce
A 1200 600 500
B 1000 800 650
C 1400 700 850
D 750 900 300
> clg <_ c(IIAII' IIBII' Ilcll, IIDII)
> clgA <- c(1200, 600, 500)
> clgB <- c(1000, 800, 650)
> clgC <- c(1400, 700, 850)
> clgD <- c(750, 900, 300)
> d = data.frame(clgA, clgB, clgC, clgD)
> d
clgA clgB clgC clgD
1 1200 1000 1400 750
2 600 800 700 900
3 500 650 850 300
> dl = as.matrix(d)
> dl
clgA clgB clgC clgD

[1,] 1200 1000 1400 750
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[2,] 600 800 700 900
[3,] 500 650 850 300
> barplot(dl, beside = T, names.arg = clg, col = 1:2:3, legend = c("Arts",
"Science", "Commerce"),xlab = "College", ylab = "No. of Students")

; W Arts

& B Science

= = Commerce

s <
College

For the above example draw subdivided bar diagram.
> barplot(dl, beside = F, names.arg = clg, col = 1:2:3:4, legend = c("A",
"B", "C", "D"),xlab = "College"”, ylab = "No. of Students")

Commerce
Science
Ars

2500
|

1500 2000
I

No. of Students

1000

500

College

barplot(dl, beside = F, horiz = T, names.arg = clg, col 1:2:3, legend =
c("Arts", "Science", "Commerce"),ylab = "College", xlab = "No. of Students")



Ano.lyzing and Visualizing Data with R Software - A Practical Manual

Chapter 2 - Graphs and Diagram

W Arts
B Science
B Commerce

College

0 500 1000 1500 2000 2500

No. of Students

Example: Represent the following data by a pie diagram:

Item : Food | Clothing | Recreation | Indian | Rent | Miscellaneous

Expenditure (in Rs.) | 87 24 11 13 25 20

> itm <- c("Food", "Clothing", "Electric", "Movie", "Rent", "Misc")
> exp ,- c(87, 24, 11, 13, 25, 20)

> ple(exp, main = "Expenditure", labels = itm, radius = 1,
col=rainbow(length(exp)))

Expenditure

Clothing Misc

EIe::Erft:
Movie
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2.3 Graphical Representation of data

Statistical data can be represented in the form of graphs such as
e Histogram
e Frequency polygon
e Qgive curve
R supports commands hist, plot, lines, points etc for drawing above graphs.

2.3.1 Histogram

> hist(x, breaks = classlimits, freq/probability = False/True, density =
NULL, col = NULL, border = NULL, main = paste("Histogram of", xname), xlim =
range(breaks), ylim = NULL, xlab = xname, ylab=yname, axes = TRUE . . . .)

x: A vector of values for which the histogram is desired.

breaks: A vector giving breakpoints (class limits) for histogram. This can be done using c()
or seq(). For eg: breaks=c(100, 300, 500, 700) Compute a histogram for the raw data
values and set the bins (bars) such that they run from 100 to 300, 300 to 500 and 500 to 700.
However, the c() function can make your code very messy sometimes. That is why you can
instead use breaks=seq(x, y, z). The values of x, y and z are determined by yourself and
represent, in order of appearance, the begin number of the x-axis, the end number of the x-

axis and the interval in which these numbers appear.
> brk <- seq(148,178,5)
> hist(x, breaks = brk)

This command creates histogram with class limits 148 to 153, 153 to 158, 158 to 163, 163
to 168,168 to 173,173 to 178.

Note that you can also combine the two functions:

> hist(x, breaks=c(100, seq(200,700, 150)))

Make a histogram for the vector x, start at 100 on the x-axis, and from values 200 to 700,
make the bins 150 wide

freq/probability: logical; if TRUE, the histogram graphic is a representation of frequencies;
if FALSE, probability densities, are plotted (so that the histogram has a total area of one).
Defaults to TRUE if and only if breaks are equidistant (and probability is not specified).
density: the density of shading lines, in lines per inch. The default value of NULL means that
no shading lines are drawn.

col: a colour to be used to fill the bars. The default of NULL yields unfilled bars.

border: the color of the border around the bars. The default is to use the standard
foreground color.

main: Overall title for the plot.

\"

brk <- seq(148,178,5)
xnme = “Heights”
hist(x, breaks = brk, freq = FALSE, main = paste("Histogram of" , xnme))

vV V

> X <- scan()
1: 170 151 154 160 158 154 171 156 160 157 148 165 158
14: 160 157 159 155 151 152 161 156 164 156 163 174 153 170 149 166 154
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31: 166 160 160 161 154 163 164 160 148 162 167 165 158 158 176

46:
Read 45 items
> hist(x)

> hist(x, breaks = brk, freq = FALSE, col = "red", border = "blue", main
paste("Histogram of" , xnme), xlab = "Student's Heights", ylab="Prportion of

students")

Chapter 2 - Graphs and Diagram

Histogram of HEIGHTS

£ 5 |
E o
g ) [ I ] ] I 1
150 155 160 165 170 175
Student’s Heights
Histogram for ungrouped frequency data
x: | 150 | 155 | 160 | 165 | 170 | 175
.1 6 | 11 | 14 | 9 3 2
> x <- seq(150,175,5)
> f <- ¢(6,11,14,9,3,2)
>y <- rep(x,f)
> hist(y)
> t = seq(147.5,177.5,5)
> hist(y, breaks = t)
Histogram for grouped frequency data
C.I.| 0-25 | 25-50 | 50-75 | 75-100 | 100-125
f: 5 8 13 11 3

f <- c(5,8,13,11,3)

y <- rep(midx, f)
hist(y)

V VVV VYV

midx <- seq(12.5,112.5,25)

cls_limit <- seq(0,125,25)

hist(y, breaks=cls_limit)
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2.3.2 Frequency polygon

It is obtained by joining the points (xi, fi) where xi is the midpoint of the ith class interval
and fi is the corresponding frequency.

> 1b <- seq(0,100,25)
> ub <- seq(25, 125, 25)
> midx <- (lb+ub)/2
> f <- ¢(5,8,13,11,3)
> x0 <- c(0, midx, 125)
> f0 <- c(0,f,0)
>y <- rep(midx, f)
> bks <- seq(0,125,25)
> hist(y,breaks=bks)
> lines(x0, f0)
Histogram of y
] _J/;I .‘ X
e ./ I\'\
/ \
/ \
2 " 7 \
L \
& @A 14
T —f_ \
=T - I \
/ ‘
o= /' \\\l
o Jdl \
| B 0 T T ] T 1
0 20 40 60 80 100 120
OR
> plot(x0,f0, main = "Frequency Polygon", xlab ="X-axis", ylab = "Y-axis",

type = "o", 1ty =6, x1lim = range(min(x0),max(x0)))

Frequency PDWQDI"I
.Q"-\
7 £
L R 3 .t
4 g
= £ L'\
- .r'. \'\
! . b
w - .
= . 4
:;_5 o - _/‘/ i
7 Y
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2.3.3 Ogives

C.I. | 0-25 | 25-50 | 50-75 | 75-100 | 100-125

f: 5 8 13 11 3

> f <- ¢(5,8,13,11,3)

> f

[1] 5 8 13 11 3

> lc <- cumsum(f)

> lc

[1] 5 13 26 37 40

> uc <- 1:5

> uc

[11 12345

> for(i in 5:1)

+ {uc[i] <- sum(f[5:i])}

> uc

[1] 40 35 27 14 3

> lbx <- seq(0,100,25)

> lbx

[1] 0 25 50 75 100

> ubx <- seq(25,125,25)

> ubx

[1] 25 50 75 100 125

> plot(ubx,lc,type = "1",xlim = c(0,100),xlab = "Class Interval", ylab =
"Cumulative frequency",lwd =2)
> lines(lbx,uc,type = "1",xlim = c(0,100),xlab = "Class Interval", ylab =
"Cumulative frequency",lwd =2)

ATy

Sumliative IneG

-

20 41 1] B 100
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Chapter 3

Measures of Central Tendency

Mrs. Pratiksha M. Kadam, Assistant Professor, Department of Statistics,
K. C. College, Churchgate, Mumbai - 400 020.

3.1 Introduction

According to Prof. Bowley, “Measures of central tendency (averages) are statistical constants
which enable us to comprehend in a single effort the significance of the whole.” In this
chapter we discuss the functions in R to calculate various measures of central tendency.

There are different types of averages.
1. Mathematical Averages:
a. Arithmetic mean
b. Geometric mean
c. Harmonic mean
2. Positional Averages:

a. Partition Values
e Medians
e Quartiles
e Deciles
e Percentiles
b. Mode

3.2 Mathematical Averages

3.2.1 Arithmetic mean

For raw data:

n
— Zi:l xl
x = ——
n
Where n = the number of terms
Xi = ith observation
For ungrouped frequency distribution:
n
i=1 fiXi

X =
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Where n= total number of observations
xi = ith observation; fi = frequency of ith observation

For grouped frequency distribution:
i1 fixi

i=1fi

X =

Where x; = mid-point of ith class interval
fi = frequency of ith class

3.2.2 Geometric Mean

For raw data:

1
n n
X = | | Xi
i=1
Where n = the number of terms
xi = Ith observation
For ungrouped frequency distribution:
1
n N
X = | | Xifi
i=1

Where N=}1*, f;
n= total number of observations)
xi = ith observation; fi = frequency of ith observation

For grouped frequency distribution:

3
=2l

=1
Where N=}"*_, f;
xi =mid-point of ith class interval
fi = frequency of ith class
3.2.3 Harmonic Mean
For raw data:
_ n
X =
n 1
=1 xl

Where n = the number of terms
xi = Ith observation
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For ungrouped frequency distribution:

_ N
X=—7F
n L
=1 ﬁxl
Where N=}1", f;
n= total number of observations)
xi = i*h observation
fi = frequency of ith observation
For grouped frequency distribution:
_ N
X =——————
n _fi
=1 ﬁxl

Where N=}1, f;
xi =mid-point of ith class interval
fi = frequency of ith class

3.3 Positional Averages

3.3.1 Partition Values
a) Median

Median is the value that divides the data into two equal parts, when the data is arranged in
numerical order. It is the middle value when data size N is odd. It is the mean of the middle
two values, when data size N is even.

For ungrouped frequency distribution:

Find the cumulative frequencies for the data. The value of the variable corresponding to
which a cumulative frequency is greater than (N+1)/2 for the first time.(Where fi = frequency
of ith observation, N=Y.I, f;)

For grouped frequency distribution:

First obtain the cumulative frequencies for the data. Then mark the class corresponding to
which a cumulative frequency is greater than N/2 for the first time. Find the cumulative
frequencies for the data. The value of the variable corresponding to which a cumulative
frequency is greater than (N+1)/2 for the first time.(Where f; = frequency of ith observation,
N=Y",f:.) Then that class is median class. Then median is evaluated by the following
formula:

N
2~ 9

median = |; + (I,—1,) f—
m
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Where N=}1*, f;

fi = frequency of ith class; I:= lower limit of the median class;

2= upper limit of the median class; fm=frequency of the median class.
¢f = cumulative frequency of the class proceeding to the median class.

b) Quartiles

The data can be divided in to four equal parts by three points. These three points are known
as quartiles. The quartiles are denoted by Qi, i = 1,2,3. Qi is the value corresponding to
(iN/4)th observation after arranging the data in the increasing order.

For grouped frequency distribution:

First we obtain the cumulative frequencies for the data. Then mark the class corresponding
to which a cumulative frequency is greater than (iN)/4 for the first time. (Where fi=
frequency of ith observation, N=Y.[-, f;). Then that class is Qi class. Then Qi is evaluated by
formula:

i=1,2,3

Where 1= lower limit of the Qi class

[2= upper limit of the Qi class

cf = cumulative frequency of the class proceeding to the Qi class.
fq= frequency of the Qi class.

c) Deciles

Deciles are nine points which divided the data in to ten equal parts. Di is the value
corresponding to (iN/10)th observation after arranging the data in the increasing order.

For grouped frequency distribution:

First obtain the cumulative frequencies for the data. Then mark the class corresponding to
which a cumulative frequency is greater than (iN)/10 for the first time. (Where fi = frequency
of ith observation, N=).i; f;). Then that class is Di class. Then Di is evaluated by the following
formula:

0~ <f

D; =1+ (l,—-1) T

Where I:= lower limit of the Di class
[2= upper limit of the Di class; fi= frequency of the Di class.
c¢f = cumulative frequency of the class proceeding to the Di class.
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d) Percentile

Percentiles are ninety-nine points which divided the data in to hundred equal parts. Pi is the
value corresponding to (iN)/100t observation after arranging the data in the increasing
order.

For grouped frequency distribution:
First obtain the cumulative frequencies for the data. Then mark the class corresponding to
which a cumulative frequency is greater than (iN)/100 for the first time. (Where fi=
frequency of ith observation, N=),i~; f;) Then that class is Pi class. Then Pi is evaluated by the
following formula:
IN
100~ ¢/
Pi=lL +(L-l)| —F
fo
Where i=1, 2, ..., 100
1= lower limit of the Pi class; I2= upper limit of the Pi class; f,= frequency of the Pi class.
¢f = cumulative frequency of the class proceeding to the Pi class;

3.3.2 Mode

The mode is the most frequent data value. Mode is the value of the variable which is
predominant in the given data series. Thus in case of discrete frequency distribution, mode
is the value corresponding to maximum frequency. Sometimes there may be no single mode
if no one value appears more than any other. There may also be two modes (bimodal), three
modes (trimodal), or more than three modes (multi-modal).

For grouped frequency distributions:
The modal class is the class with the largest frequency. After identifying modal class mode is
evaluated by using interpolated formula. This formula is applicable when classes are of equal
width.
dy
Mode = [} + (1,—1) <—d1 n d2>
Where [1= lower limit of the modal class
2= upper limit of the modal class
d1 =fm-fo and dz=fm-f1
fm=frequency of the modal class
fo=frequency of the class preceding to the modal class,
f1= frequency of the class succeeding to the modal class.

3.4 Calculations of Measures of Central Tendency using R

Note: In R code red coloured text denotes the code for the calculation and blue coloured text
denotes the output of the code written before that statement.
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For measures of central tendency, we need to install package “psych” from CRAN. Before we

start executing these functions we must load package “psych”.

To install “psych” Package in R:
In R Gui, Click on Packages menu and select the option “Install package(s)”, Select 0-cloud
[https] from the country options and click on OK. Then a list of functions will be displayed.
From that list select function “psych” and click on Install.

To load “psych” package in R:

In R Gui, Click on Packages menu and select the option “Load package”. List of installed
packages will be shown. From that list select “psych” and click on OK.

Examples solved using R

1. Given the following data about average rainfall in every month in the year of 2017.

Month Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec
Rainfall 10 10 10 10 10 | 560 | 640 | 520 | 320 | 90 20 10
(in mm)

Calculate Arithmetic, Geometric, Harmonic mean, Median and Mode, First quartile, 56th
percentile and 3d decile for the above data.

R code:

> #ungrouped data

> rainfall = c(10, 16, 10, 10, 10, 560, 640, 520, 320, 90, 20, 10)
> mean(rainfall)

[1] 184.1667

> geometric.mean(rainfall)

[1] 46.69096
> harmonic.mean(rainfall)
[1] 17.92363
> median(rainfall)

[1] 15

# we define a function mode as follows:
mode <- function(x) {
unigx <- unique(x)
uniqx[which.max(tabulate(match(x, uniqx)))]

+ + + vV

}

> mode(rainfall)

[1] 10

> quantile(rainfall,

25%
10

> quantile(rainfall,

56%
31.2

.25)

.56)

> quantile(rainfall, .3)

30%
10




Analyzing and Visuo.lizing Data with R Software - A Practical Manual

Chapfer 3 - Measures of Central Tenclency

2. The information about days and number of working hours for a week is given in the
following table. Saturday and Sunday are holidays so working hours are not counted.

Day Sunday | Monday | Tuesday |Wednesday|Thursday| Friday | Saturday

Working NA 8 6 5.5 7 4.5 NA
Hours

Calculate arithmetic, geometric, harmonic mean, median, mode, third quartile, 32nd
percentile value and 8t decile of the above data.

R code:

> #ungrouped data with NA values

> x=c(NA, 8, 6, 5.5, 7, 4.5, NA)

> mean(x)

[1] NA

> # as NA is included mean is not calculated. We need to exclude NA values to
calculate the mean of the given data.

> mean(x, na.rm=TRUE) #na.rm represents remove NA values.
[1] 6.2

> geometric.mean(x, na.rm=TRUE)

[1] 6.081111

> harmonic.mean(x, na.rm=TRUE)

[1] 5.962573

> median(x, na.rm = TRUE)

[1]1 6

mode <- function(x) {

+ unigx <- unique(x)

+ uniqx[which.max (tabulate(match(x, uniqx)))]

+

>

\"

}

y=na.omit(x)#to remove NA from the dataset.
mode(y)
[1] 8
> x=c(NA, 8, 6, 5.5, 7, 4.5, NA)
> y=na.omit(x)
> quantile(y, .75)
75%
7
> quantile(y, .32)
32%
5.64
> quantile(y, .8)
80%
7.2

\")

3. The table shows the scores obtained by a group of players in a test. Find the arithmetic,
geometric, harmonic mean, median, mode and first quartile, 21st percentile and 6t decile of
the scores.

Scores 0 1 2 3 4 5 6

Frequency 3 5 4 6 4 5 3

R code:
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x=c(0, 1, 2, 3, 4, 5, 6)

f=c(3, 5, 4, 6, 4, 5, 3)

n=sum(f)

y=rep(x,f)

local({pkg <- select.list(sort(.packages(all.available =

TRUE) ) ,graphics=TRUE)

+ if(nchar(pkg)) library(pkg, character.only=TRUE)})

> mean(y)

[1] 3

> geometric.mean(y)

[1] ©

> harmonic.mean(y)

[1] ©

> median(y)

[1] 3

mode <- function(x) {

+ unigx <- unique(x)

+ unigx[which.max(tabulate(match(x, uniqgx)))]

+

>

V VV VYV

\%

}
mode(y)
[1] 3
> quantile(y, .25)
25%
1.25
> quantile(y, .21)
21%
1
> quantile(y, .6)
60%

4. The following data represents the distribution of monthly electricity bills of the families
in a society. Find Arithmetic, geometric, harmonic mean, median and mode, Q1, Q3, D7 and
Pes.

Billin | 0-200 | 200-400  400-600 | 600-800 | 800-1000| 1000- | 1200-
(Rs.) 1200 1400
Frequency ‘ 1 ‘ 3 ‘ 11 ‘ 14 ‘ 9 ’ 4 ‘ 2
R code:

ub=c (200, 400, 600, 800, 1000, 1200, 1400)
1lb=c(0,200, 400, 600, 800, 1000, 1200)
h=200

x=(lb+ub) /2

f=c(1, 3, 11, 14, 9, 4, 2)

n=sum(f)

am =sum(x*f)/n

> am

[1] 713.6364

> gm=10"(sum(f*1ogl0(x))/n)

> gm

[1] 655.632

> hm=n/sum(f/x)

V VVVYV VYV



Analyzing and Visualizing Data with R Software - A Practical Manual
Chapfer 3 - Measures of Central Tenclency

> hm

[1] 570.1341

> lcf=cumsum(f)

> medc=min(which(lcf>n/2))

> med=lb[medc]+(n/2-1cf[medc-1])*h/f[medc]
> med

[1] 700

> modc=which (f==max(f))

> mode=1lb[modc]+h*((f[modc]-f[modc-1])/(2*f[modc]-f[modc-1]-f[modc+1l] ))
> mode

[1] 675

> gqlc=min(which(lcf>n/4))

> ql=lb[qlc]+(n/4-1cf[gqlc-1])*h/f[qlc]

> gl

[11 527.2727

> q3c=min(which(lcf>3*n/4))

> g3=1lb[q3c]+(3*n/4-1cfl[q3c-1]1)*h/f[q3c]

> q3

[1] 888.8889

> d7c=min(which(lcf>7*n/10))

> d7=1lb[d7c]+(7*n/10-1cf[d7c-1])*h/f[d7c]
> d7

[1] 840

> p68c=min(which(lcf>68*n/100))

> p68=1b[p68c]+(68*n/100-1cf[p68c-1])*h/f[p68c]
> p68

[1] 820.4444

3.5 References:

1. R for Beginners, Emmanuel Paradis
2. Descriptive Statistics, Vipul Publications, Mrs. M. ]. Golba.
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Chapter 4

Measure of Dispersion

Dr. Bhagat Gayval, Assistant Professor, Department of Statistics,
K. C. College, Churchgate, Mumbai - 400 020.

4.1 Range

It is difference between the smallest and largest values of the data. The range is the size of
the smallest interval which contains all the data and provides an indication of Statistical
dispersion. It is measured in the same units as the data. Since it only depends on two of the
observations, it is most useful in representing the dispersion of small data sets.
Symbolically, Range=Max-Min

Max—Min

Coefficient of Range = .
Max+Min

4.2 Quartile Deviation

It is also measure of dispersion and it has cover 50% of data from all values. Quartile
deviation (Q.D.) is given by formula:

1
Q.D.= E(Qs - Q1)
Q3—Qq

Coefficient of Q.D. =———
Q3+Qq

Where Q1 is the first quartile and Qs is the third quartile of the distribution.

4.3 Mean Deviation about ‘a’

Mean deviation is useful for finding the dispersion since it’s based upon all the observation
and it is defined as the arithmetic mean of absolute deviations taken from any average or
any value.

It is defined as follows:

n
1
Mean Deviation about a = —Elxi — al
n
1

Where ‘a’ can be mean or median or mode or any specified value.
In case of ungrouped/grouped frequency distribution
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n
1
Mean Deviation about a = Nz: filx; — al
1

Coefficient of mean deviation:
Mean Deviation about a

Coefficient of mean deviation = "

4.4 Variance

Variance is measures how far a data set is spread out and it is defined as the arithmetic
mean of squares of deviations of the given values taken from arithmetic mean.

It is defined as

|4 -1 N X)2
ar _Ez(xi —X)
i=1

Where X the mean, n is is the no. of observations of the data.

4.5 Standard Deviation

It is a measure that is used to quantify the amount of variation or dispersion of a set of data
values. A low standard deviation indicates that the data points tend to be close to the
expected value of the set, while a high standard deviation indicates that the data points are
spread out over a wider range of values.

It is defined as

o= \/%Zn:(xi — X)?

Coefficient of Variation (CV) = —x 100

xRil Q

4.6 Examples

4.6.1 Section A-Raw Data-R coding and Example

Example - Find the range, Quartile Deviation, Mean deviation about median, Variance,
Standard Deviation and their coefficients for the following data-

25,29,30,17,19,30,18,28,31,33,26,28
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# Range and Coefficient of range (Crange)

> x<-c(25,29,30,17,19,30,18,28,31,33,26,28)

> r<-range(x)

>r

[1] 17 33

> diff(r)

[1] 16

> Crange =(max(x)-min(x))/(max(x)+min(x))

> Crange

[1] 0.32
#Quartile Deviation (QD) & Coefficient of QD
> QD=(quantile(x,0.75)-quantile(x,0.25))/2

> QD

> 3.25

> CoeffQD=(quantile(x,0.75)-
quantile(x,0.25))/(quantile(x,0.75)+quantile(x,0.25))
> CoeffQD

0.1214953

# Mean Deviation from median
# Library (‘psych’)
# mad function calculates Mean Deviation from median
> mad(x)

[1] 3.7065

> cmd=(mad(x))/(median(x)) #calculated coefficient of mean deviation
about median

> cmd

[1] 0.132375
# Variance & CV

> variance<-var(x) #sample variance

> variance

[1] 28.87879

> CV=(sd(x)*100)/mean(x)

> CV

[1] 20.53719
# Standard Deviation(SD) & Standard Error (SE)
> SD<-sd(x) #sample standard deviation

> psd=(SD*sqrt(length(x)-1))/ sqrt(length(x))
> psd #population standard deviation

[1] 5.145116

> cv=(psd/mean(x))*100

> cv

[1] 19.66287

4.6.2 Section B -ungrouped data set
Example - Find the range, Quartile Deviation, Mean deviation, Variance, Standard Deviation
and their coefficients for the following data-

X o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Frequency 5 14 21 23 60 80 86 125 112 93 56 43 32 24 22 16
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# Range and Coefficient of range

> grp=seq(0,15,by=1)

> f=c(5,14,21,23,60,80,86,125,112,93,56,43,32,24,22,16)
> data=rep(grp, f)

> r<-range(data)

diff(r)

[1] 15

> coeffrange=(max(data)-min(data))/(max(data)+min(data))
> coeffrange

[1] 1

#Quartile Deviation (QD) & Coefficient of QD
QD=(quantile(data,0.75)-quantile(data,0.25))/2

> QD

1.625

> CoeffQD=(quantile(data,0.75)-
quantile(data,0.25))/(quantile(data,0.75)+quantile(data,0.25))
> CoeffQD

0.220339

\'}

# Mean Deviation from median

# Library (‘psych’)

# mad function calculates Mean Deviation from median

> mad(data)

[1] 2.9652

> cmd=(mad(data))/(median(data)) #calculated coefficient of mean deviation
about median

> cmd

[1] 0.4236

# Variance & Coefficient of Variance (CV)
> variance<-var(data)

> variance

[1] 9.548566

# Standard Deviation(SD) & Standard Error (SE)

> SD<-sd(data) #sample standard deviation

> psd=(SD*sqrt(length(data)-1))/ sqrt(length(data))
> psd #population standard deviation

[1] 3.088172

> cv=(psd/mean(data))*100

> ¢cv

[1] 40.66811

4.6.3 Section C -Grouped data set
Example - Find the range, Quartile Deviation, Mean absolute deviation, Variance, Standard
Deviation for the following data-

Age 20-30 30-40 40-50 50-60 60-70

No. of person 25 42 28 15 10

> grp=seq(0,15,by=1)
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> f=c(5,14,21,23,60,80,86,125,112,93,56,43,32,24,22,16)
> data=rep(grp, f)

> cmd=(mad(data))/(median(data)) #calculated coefficient of mean deviation
about median

> cmd

[1] 0.4236

> SD<-sd(data) #sample standard deviation

> psd=(SD*sqrt(length(data)-1))/ sqrt(length(data))
> psd #population standard deviation

[1] 3.088172

> cv=(psd/mean(data))*100

> cv

[1] 40.66811

> 1b = seq(20,60,10)

> 1b

[1] 20 30 40 50 60

> ub = seq(30,70,10)

> ub

[1] 30 406 50 60 70

> midx = (lb+ub)/2

> midx

[1] 25 35 45 55 65

> f = c(25,42,28,15,10)

>y = rep(midx, f)

> range = ub[length(ub)] - 1b[1] #calculates range
> range

[1] 50

> cf = cumsum(f) #calculates cumulative frequency of greter than type
> cf

[1] 25 67 95 110 120

> gl_mincf = min(which(cf >= sum(f)/4))

> ql_mincf

[1] 2

> ql_11 = lb[ql_mincf]; q1_12 = ub[ql_mincf]

> gql_11;91_12

[1] 30

[1] 40

> h = (q1_12-q1_11)

> h

[1] 10

> first_quart = q1_11 + (h*(sum(f)/4-cflql_mincf-1]1)/f[ql_mincf])
> first_quart

[1] 31.19048

> x_bar = sum(f*midx)/sum(f)

> x_bar

[1] 40.25

> dev_mean = f * (midx - x_bar)”"2

> dev_mean

[1] 5814.062 1157.625 631.750 3263.438 6125.625

> variance = sum(dev_mean)/sum(f)

> variance

[1] 141.6042
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4.7 Skewness and Kurtosis

4.7.1 Skewness

Lack of symmetry in distribution is called as Skewness. We know that the Skewness can be
positive or negative or zero. If the relation of mean>median>mode then it will be positive
and curved as right tail. If the relation of mean<median<mode then it will get negative and
curve as left tail. If the values of mean=median=mode then there is no Skewness.

Mathematically measures of Skewness have studied as follows:
(A) Absolute Skewness measures:
[) Karl Person’s measure of Skewness=Mean-Mode=3(Mean-Median)
II) Bowley’s measure of Skewness=(Q3-Q2)-(Q2-Q1)

(B) Relative or coefficient of Skewness measures:
[) Karl Person’s coefficient of Skewness

Mean — Mode  3(Mean — Median)

S.D. S.D.
If SKp>0 the curve is positively skewed, if SKp=0 then the curve is symmetric andz if SKp<0

SKp =

then the curve is said to be negatively skewed curve.
II) Bowley’s coefficient of Skewness
+Q,—2
s, = (@ +01—20:)
Q3 — Q1)

If SKs>0 the curve is positively skewed, if SKs=0 then the curve is symmetric and if SKs<0

then the curve is said to be negatively skewed curve.
[IT) Measures based on moments

Relative measure of Skewness

If y; > 0 then the curve is positively skewed, if y; = 0 then the curve is symmetric and if
y1 < 0 then the curve is negatively skewed curve.

4.7.2 Kurtosis:

Kurtosis enables us to have an idea about the flatness or peakedness of the frequency curve.
Kurtosis is measuredly compared with normal distribution. Mainly Kurtosis will be defined
by three types such as Leptokurtic, Mesokurtic and Platykurtic distribution.

Mesokurtic distribution is as likely as normal distribution. In Leptokurtic distribution, the
Kurtosis greater than Mesokurtic distribution and in Platykurtic distribution the Kurtosis is
less than Mesokurtic distribution.
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It is defined as follows:
u
,32:_24 , Y2=p2—3
Ha
Where Platykurtic curve is defined as $2< 3 or y2< 0,
Leptokurtic curve is defined as 32> 3 or y2>0,

And Mesokurtic curve is defined as 32 = 3 or y2=0.
4.7.3 Examples
Raw Data-R coding and Example

Example - Find the Skewness and Kurtosis and for the following data-
25,29,30,17,19,30,18,28,31,33,26,28

# Karl Person’s coefficient of Skewness
x<-c¢(25,29,30,17,19,30,18,28,31,33,26,28)
psd=(SD*sqrt(length(x)-1))/ sqrt(length(x))
skp=(3*(mean(x)-median(x)))/ psd

skp

[1] -1.859036

> #Bowley'’s coefficient of Skewness

> a=quantile(x,0.75); b=quantile(x,0.25); c=2*quantile(x,0.5)
> num=a+b-c; denom=a-b

> skb=num/denom; skb

-0.3846154

> # Measure based on Moments

> library(moments)

> skw=skewness(x); skw

[1] -0.6760079

> cs=sqrt(abs(skw))

> coefficient=-(cs)

> coefficient

[1] -0.822197

> # Kurtosis -based on Moments

> library(moments)

> kur=kurtosis(x)

> kur

[1] 2.068371

> coefK=kur-3

> coefK

[1] -0.9316292

V VV VYV
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Chapter 7

Probability and Probability Distributions

Dr. Asha A. Jindal, Associate Professor and Head, Department of Statistics,
K. C. College, Churchgate, Mumbai - 400 020.

7.1 Probability

In real life, experiments are classified into two categories.
e Deterministics experiments
e Probabilistics experiments

In probability theory we are concerned with random experiments. The set of all possible
outcomes of a random experiment is called as a sample space.

In computing probabilities of different events using R software we use function choose (n,r)
which gives the value of number of combination of n objects taken r at a time(order is not
important) whereas function factorial (n)/factorial (n-r) gives the value of number of n
objects taken r at a time(order is important).

If a random experiment results in ‘n’ equally likely, mutually exclusive and exhaustive cases
and if ‘m’ of them are favourable to the event A then the probability of event A is the ratio of
m to n.

m Total No.of cases favourable to event A
P(A) = — =

n Total no.of cases

1) calculate a) 1°C3 b)8Cs c) °Ps d) 5P:.

Solution:

> al=choose (10,3)

> al

[1] 120

> a2=choose (8,4)

> a2

[1] 70

> a3=factorial (9)/factorial (9-3)
> a3

[1] 504

> ad4=factorial (5)/factorial (5-2)
> a4

[1] 20
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2) In a group of 6 boys and 4 girls, four children are to be selected. In how many
different ways can they be selected such that at least one boy should be there?

Solution:

> gq= (choose (6,1) *choose (4,3) +choose (6,2) *choose (4,2) +choose (6,3)
*choose (4,1) +choose(6,4) *choose (4,0))

>q

[1] 209

3) From a group of 7 men and 6 women, five persons are to be selected to form a
committee so that at least 3 men are there in the committee. In how many ways can it
be done?

Solution:

> r =(choose (7,3) *choose (6,2) +choose (7,4) *choose (6,1) +choose (7,5)
*choose (6,0))

>r

[1] 756

4) In how many different ways can the letters of the word 'CORPORATION' be arranged
so that the vowels always come together?

Solution:

> s= (factorial (7)/factorial (2) *factorial (5)/factorial (3))
> s
[1] 50400

5) How many 3-letter words with or without meaning, can be formed out of the letters
of the word, 'LOGARITHMS’, if repetition of letters is not allowed?

Solution:

> t=factorial (10)/factorial (10-3)
> t

[1] 720

6) In how many different ways can the letters of the word, 'LEADING’, be arranged such
that the vowels should always come together?

Solution:

> u=factorial (5) *factorial (3)
> u

[1] 720

7) How many arrangements can be made out of the letters of the word,
'ENGINEERING'"?

Solution:
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> v=factorial (11)/ (factorial (2) ~factorial (3) *factorial (3) *factorial
(2))

> v

[1] 277200

8) How many 6-digit telephone numbers can be formed if each number starts with 35
and no digit appears more than once?

Solution:

> w=factorial (8)/factorial (8-4)
> w

[1]11680

9) A box contains 4 red,3 white and 2 blue balls. Three balls are drawn at random. Find
out the number of ways of selecting the balls of different colours?

Solution:

> X= (choose (4,1) *choose (3,1) *choose (2,1))
> X

[1] 24

10) What is the probability of drawing two Ace cards from well shuffled pack of 52
playing cards?

Solution:
>y= (choose (4,2)/choose (52,2))
>y

[1] 0.004524887

11) A box contains 5 red and 7 blue marbles.A sample of 4 is drawn at random what is
probability of selecting at least two blue marbles?

Solution:

>z=(choose (5,2) *choose (7,2) +choose (5,1) *choose (7,3) +choose (5,0)
*choose (7,4))/ (choose(12,4))

>z

[1] 0.8484848

7.2 Probability Distributions

Binomial Distribution

R supports following functions related to binomial distribution with specified parameters.
dbinom(x,n,p) It gives individual binomial probability at X=x.
pbinom(x,n,p) It gives cumulative binomial probability function. P( X< x).

gbinom(x,n,p) It gives quantile fuction.

rbinom(m,n,p) It generates a random sample of size m from binomial distribution.




Analyzing and Visuo.lizing Data with R Software - A Practical Manual

Chap'l'er 7 - Probabi]i'l‘y and Probabi]ii‘y Distributions

Similar functions starting with letter d, p, q and r are used in connection with different
distributions.
Following are some commonly used distributions with their R names.

Distributions R name Additional Arguments
Binomial binom Size, probability
Poisson Pois Parameter lambda
Hypergeometric hyper M, N-M, n
Geometric geom probability
Negative Binomial | nbinom Size, probability
Uniform unif min, max
Exponential exp rate

Normal norm mean, sd
Log--normal Inorm meanlog, sdlog
Cauchy cauchy location, scale
Gamma gamma shape, scale

Beta beta shapel, shape2, ncp
Student’s t t df, ncp

F f df1, df2, ncp
Chi-square chisq df, ncp

Logistic logis location, scale
Weibull weibull shape, scale
Wilcoxon wilcox m.n

1) If X~Bino (10,0.6). Find a) P(X=0) b)P(X=2) c) P(X<3) d)P(X>5)

Solution:
Given : X~Bin (n=10, p=0.6)
> al=dbinom (0,10,0.6)
> al
[1] 0.0001048576
b] P(X=2)
> bl=dbinom (2,10,0.6)
> bl
[1] 0.01061683
c] P(X<=3)
> cl=pbinom (3,10,0.6)
> cl
[1] 0.05476188
d] P(X>5)
> dl=1-pbinom (5,10,0.6)
> dl
[1] 0.6331033
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2) If X~P (3.2). Find a) P(X=0) b) P(X=3) ¢)P(X=5) d)P(X<=1) e)P(X>3)
f) P(X25).

Solution:

> X~P(m=3.2)

> al=dpois (0,3.2)

> al

[1] 0.0407622

> bl=dpois (3,3.2)

> bl

[1] 0.222616

> cl=dpois (5,3.2)

> cl

[1] 0.1139794

> dl=ppois (10,3.2)
> dl

[1] 0.9995028

> el=1-ppois (3,3.2)
> el

[1] 0.3974803

> fl=1-ppois (5,3.2)
> fl

[1] 0.16054081

3) If X~HyperGeo (N=25, M=5, n=3).
Find a) P(X=0) b) P(X=2) c) P(X=5) d) P(X<1) e)P(X>3) f)P(X=2).

Solution:

Given :X ~ HyperGeo (N =25, M=5,n=3)
> al=dhyper (0,5,20,3)

> al

[1] 0.4956522

> bl=dhyper (2,5,20,3)

> bl

[1] 0.08695652

> cl=dhyper (5,5,20,3)

> cl

[1] ©

> dl=phyper (1,5,20,3)

> dl

[1] 0.9086957

> el=1-phyper (3,5,20,3)
> el

[1] ©

> fl=1-phyper (2,5,20,3)
> fl

[1] 0.004347826
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4) Plot probability mass function (pmf)and distribution function for the following
ramdom variables a)X~P (2.6) b) X~Bino (8,0.65) c) X~ HyperGeo (N=50,M=10, n=7)
Solution:

a) X~P (2.6)

> m=2.6

> x=0:10

> p=dpois (x, m)

> d=data.frame (x, p)

>

d
X p
1 0 0.0742735782
2 1 0.1931113034
3 2 0.2510446944
4 3 0.2175720684
5 4 0.1414218445
6 5 0.0735393591
7 6 0.0318670556
8. 7 0.0118363349
9. 8 0.0038468089
10. 9 0.0011113003
11. 10 0.0002889381
> plot (x, p,"h")
0 > a o 8

cp=ppois(x, m)
cpl=round(cp,4)
dl=data.frame(x, cpl)
plot (x, cpl,"s")

V V. V V
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b) X~ Bino (8,0.65)

>

>
>
>
>

>plot (x, bp,"h")

coNO UL A WN B

O

n=8; p=0.65

x=0:

Chap'l'er 7 - Probabi]i'l’y and Probabi]ii’y Distributions

1.0

cpil
0.6 0.8

04

0.2

T

bp=dbinom(x, n, p)
d=data.frame("x-values"=x, "probabilities'=hp)

d

x.values

Noub~hwNREOoO

8

pro
0.

[olocoNoNoNoNoNONO)

babilities
0002251875

.0033456434
.0217466823
.0807733916
.1875096590
2785857791
.2586867948
1372623809
.0318644813

bp

0.25

0.20

0.05

0.00
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cp=pbinom (x, n, p)
cpl=round (cp,4)
dl=data.frame(x, cpl)
plot (x, cpl)

Chap'l'er 7 - Probabi]i'l’y and Probabi]ii’y Distributions

10

0.6 0.8
]

cpl

04

0.2

0.0
L
0

> plot (x, cpl,”s")

c) X ~ HyperGeo (N=50, M=10, n=7)

\'

V V V V

1.0

0.6

cpl

04

0.2

|

N=50; M=10; n=7

x=0:
hp=dhyper (x, M, N-M, n)

n

d=data.frame(x, hp)

d

A WN B

WNRPR O X

hp
1.866514e-01
3.842822e-01
2.964463e-01
1.097949e-01
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5 4 2.077201e-02
6 5 1.967875e-03
7 6 8.409722e-05
8 7 1.201389e-06

>plot (x, hp,"h")

03

hp

0.1

00

> cp=phyper (x, M, N-M, n)
> cpl=round(cp,4)
> di=data.frame(x, cpl)
> di
X cpl

1 0 0.1867

2 1 0.5709

3 2 0.8674

4 3 0.9772

5 4 0.9979

6 5 0.9999

7 6 1.0000

8 7 1.0000

>plot (x, cpl,"s")

1.0

cp1

04

0.2
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5) A set of similar fair coins are tossed 640 times with the following result - no. of
Heads: 0 1 2 3 4 5 6
Frequency: 7 64 140 210 132 75 12

Fit the binomial distribution to the data.

Solution:

> x=0:6

> f=c (7,64,140,210,132,75,12)

> m=sum(x*f)/sum(f)

> n=max(x)

> p=m/n; g=1-p

> px=dbinom (x, n, p)

> pxl=round(px,4)

> ef=sum(f)*px1l

> efl=round(ef,0)

> d=data.frame(x, f,"expected frequency"=efl)

> d

X f expected. frequency

1 0 7 9
2 1 64 56
3 2 140 145
4 3 210 200
5 4 132 154
6 5 75 64
7 6 12 11

>plot (f, efl, pch="x"); abline (0,1)

200
!
x

150
1

eft

100
1

50

0 50 100 150 200

6) Fit the Poisson distribution to the following data with respect to the

Number of red blood corpuscles (x) per cell - x: 0 1 2 3 4 5
no. of cells 142 156 69 27 5 1
Solution:

> x=0:5

> f=c (142,156,69,27,5,1)
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>

m=sum(x*f)/sum(f)
px=dpois (x, m)

px=round(px,4)

ef=sum(f)*px
efl=round(ef,0)
>d=data.frame(x, f,"expected frequency'=ef)

d

1
2
3
4
5
6

X
0
1
2
3
4
5

f
142
156
69
27
5

1

expected. frequency

147.
147.
73.
24,
6.
1.

16
16
56
52
12
24

Chapter 7 - Probability and Probability Distributions

>plot (f, efl, pch="x"); abline (0,1)

ef

150
1

100
1

50

100 150

7) Plot the pmf of a] X~Bino (30,0.05) b]X~P (1.5) and comment on graph

Solution:
Given: X~Bino (30,0.05)

>

>
>
>
>

n=30; p=0.05

x=0:

bp=dbinom (x, n, p)

n

d=data.frame("x-values"=x, "probabilities"=bp)

d

OCooNOOULAS, WN B

x.values

oNOOULDS, WN RO

probabilities

2.
.389033e-01
.586367e-01
.270496e-01
.513605e-02
.235302e-02
.708997e-03
.888415e-04
.396944e-05

NPhAPNRERERARRPERNW

146388e-01



Analyzing and Visuo.lizing Data with R Software - A Practical Manual

Chap'l'er 7 - Probabi]i'l’y and Probabi]ii‘y Distributions

10 9 9.516536e-06
11 10 1.051828e-06
12 11 1.006534e-07
13 12 8.387780e-09
14 13 6.112552e-10
15 14 3.906518e-11
16 15 2.193133e-12
17 16 1.082138e-13
18 17 4.690382e-15
19 18 1.782894e-16
20 19 5.926516e-18
21 20 1.715570e-19
22 21 4.299675e-21
23 22 9.257674e-23
24 23 1.694769e-24
25 24 2.601619e-26
26 25 3.286255e-28
27 26 3.326169e-30
28 27 2.593504e-32
29 28 1.462502e-34
30 29 5.308539e-37
31 30 9.313226e-40
> plot (x, bp,"h")
g [
(I) I5 1 I0 1 I5 2I0 2I5 3I0

cp=pbinom (x, n, p)
cpl=round (cp,4)
dl=data.frame(x, cpl)
plot (x, cpl)

V V V V
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1.0

— o 00000000000000000000000000

o

0.8
|

cpl
0.6

0.4

0.2

0 5 10 15 20 25 30

> plot (x, cpl,”s")

<

08

opt
0.6

04

02

> # b]X~P (1.5) #

> m=1.5

> x=0:10

> p=dpois (x, m)

> d=data.frame(x, p)

> d

X p

1 0 2.231302e-01
2 1 3.346952e-01
3 2 2.510214e-01
4 3 1.255107e-01
5 4 4.706652e-02
6 5 1.411996e-02
7 6 3.529989¢-03
8 7 7.564262e-04
9 8 1.418299¢e-04
10 9 2.363832e-05
11 10 3.545748e-06

> plot (x, p,"h")
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0.10 0.15 0.20 0.25 0.30
1 1 1 1 1

0.05
1

0.00
1

cp=ppois (x, m)
cpl=round(cp,4)
dl=data.frame(x, cpl)
plot (x, cpl,"s")

V V V V

1.0

cpl
0.6

0.4

0.2

8) X ~ Negative Bin (r=2, P= 0.05) then compute
i. P(X=0),P(X=1),P(X<1), P(X=2)
ii. Evaluate Nbinomial probabilities and plot the graph of p.m.f and c.d.f.

Solution:i.

> dnbinom(0,2,0.05)
[1] 0.0025

> dnbinom(1,2,0.05)
[1] ©6.00475

> pnbinom(1,2,0.05)
[1] 0.00725

> 1-pnbinom(1,2,0.05)
[1] 0.99275

ii)
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> p=0.05; r=2

> x=0:10

> nbp=dnbinom(x, r,p)

> d=data.frame("X-Value"=x, "Probability"=nbp)

> d

X.X.Value Probability

1 0 0.00250000
2 1 0.00475000
3 2 0.00676875
4 3 0.00857375
5 4 0.01018133
6 5 0.01160671
7 6 0.01286411
8 7 0.01396675
9 8 0.01492696
10 9 0.01575624
11 10 0.01646527

> plot(x,nbp,"h")

0014
|

nbp
0010
|

0.006

0.002

> cpl=round(cp,4)#round function round off cp values upto 4 decimal
> dl= data.frame(x,cpl)

> dl

X cpl
1 0 0.0025
2 1 0.0073
3 2 0.0140
4 3 0.0226
5 4 0.0328
6 5 0.0444
7 6 0.0572
8 7 0.0712
9 8 0.0861
10 9 0.1019
11 10 0.1184

> plot(x,cpl) #Just points are plotted
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cpl
0.08 0.08 010 012
| | | |

0.04
|

> plot(x,cpl,"s") #It gives step function

010
|

cpl
0.06
l

0.00
|

9) Fit the Negative Binomial Distribution to following data:
X0 1 2 3 4 5
f: 213 128 37 18 4 5

Solution:

x=0:5; f=c(213,128,37,18,3,1)
m=sum(f*x)/sum(f)
var=(sum(f*x*x)/sum(f))-m*m
p=m/var;q=1--p;r=m*p/q
px=dnbinom(x, r,p)

pxl=round(px,5)

ef=sum(f)*pxl

efl=round(ef,0)

d=data.frame(x, f,"exp.freq."=efl)

V VVVVVYV VYV
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>d
X f exp.freq
1 0 213 379
2 1 128 19
3 2 37 2
4 3 18 0
5 4 3 0
6 5 1 0
> plot(f,efl,pch="x");abline(0,1) #pch gives the point markers

ef1

100
|

Q 50 100 150 200

10) Let X~ N (50,40). Find P (X<60), P(X=100) , P(10<X<20) and P(X<k)=0.293.

Solution:

> mu=50; sd=sqrt(40)

> pl=pnorm(60,mu,sd)

> pl

[1] 0.9430769

> p2=1-pnorm(100,mu, sd)
> p2

[1] 1.332268e-15

> p3=pnorm(20,mu,sd)-pnorm(10,mu,sd)
> p3

[1] 1.050591e-06

> pd=qnorm(0.293,mu,sd)
> p4d

[1] 46.55538

11) Fit a normal distribution to the following data of height (in cms) of 200 Indian
adult males

Height in cms | 144-150 | 150-156 | 156-162 | 162-168 | 168-174 | 174-180 | 180-186

No of Adults 3 12 23 52 61 39 10
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Solution:
> 1l1=seq(144,180,6)
> ul=seq(150,186,6)
> f=c(3,12,23,52,61,39,10)
> x=(11+ul)/2
> n=sum(f)
> k=length(f)
> m=sum(f*x)/n;v=sum(f*(x-m)~2)/n;sd=sqrt(v)
> 11=c(-9999,11,186)
> cp=pnorm(1l1l,m,sd)
> p=diff(cp)
> p=c(p,1l-cplk+2])
> ul=c(144,ul,9999);f=c(0,f,0)
> ef=round(n*p,0)
> d=data.frame("Lower Limit"=11,"Upper Limit"=ul,"Obs.freq"=f,"prob"=p,"cum
prob"=cp, "expfreq"=ef)
> d
Lower.Limit Upper.Limit Obs.freq prob cum.prob expfreq
1 -9999 144 0 0.0009277682 0.0000000000 0
2 144 150 3 0.0085408285 0.0009277682 2
3 150 156 12 0.0474590553 0.0094685967 9
4 156 162 23 0.1504843558 0.0569276520 30
5 162 168 52 0.2727415211 0.2074120077 55
6 168 174 61 0.2828190953 0.4801535289 57
7 174 180 39 0.1677990586 0.7629726242 34
8 180 186 10 0.0569156032 0.9307716828 11
9 186 9999 0 0.0123127140 0.9876872860 2

> plot(f,ef,xlab="0obs.freq",ylab="exp.freq","p")
> abline(0,1)

exp freq

obs freq

12) Find a)P(X<0.8) b)P (X>0.5)

If, i. X~Normal(2,1.5) ii. X~Normal(0, 1) iii. X~Exp(1.5) iv. X~beta(2,1.5)
v. X~Gamma(2,1.5) vi.X~ChiSq(10) vii. X~¢(8) viii. X~F(10,10)

ix. X~U(0,5)
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Solution:

> a=pnorm(0.8,2,sqrt(1.5), lower.tail=1)
> a

[1] 0.1635934

> b=pnorm(0.5,2,sqrt(1.5), lower.tail=0)
>b

[1] 0.8896643

> x=seq(-2,6,by=0.02)

> p=dnorm(x,2,sqrt(1.5))

> plot(x,p)

010 015 020 025 030
| | I | I

0.05
|

0.00
I

> a=pnorm(0.8,0,sqrt(1),lower.tail=1)
> a

[1] 0.7881446

> b=pnorm(0.5,0,sqrt(1),lower.tail=0)
> b

[1] 0.3085375

> x=seq(-3,3,by=0.02)

> p=dnorm(x,0,sqrt(1))

> plot(x,p)

04

01

0.0
|

> a=pexp(0.8,1.5,lower.tail=1)
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> a

[1] 0.6988058

> b=pexp(0.5,1.5,lower.tail=0)
>b

[1] 0.4723666

> x=seq(0,10,by=0.02)

> p=dexp(x,1.5)

> plot(x,p)

15

1.0

> a=pgamma(0.8,2,1.5)

> a

[1] 0.3373727

> b=pgamma(0.5,2,1.5, lower.tail=0)
>b

[1] 0.8266415

> x=seq(0,10,by=0.02)

> p=dgamma(x,2,1.5)

> plot(x,p)

05
!

04

03
|

0.1

0.0
!

> a=pbeta(0.8,2,1.5)
>a
[1] 0.803226
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> b=pbeta(0.5,2,1.5,lower.tail=0)
>b

[1] 0.6187184

> x=seq(0,1,by=0.02)

> p=dbeta(x,2,1.5)

> plot(x,p)
uw
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> a=pchisq(0.8,10)

>a

[1] 6.124333e-05

> b=pchisq(0.5,10,lower.tail=0)
>b

[1] 0.9999934

> x=se((0,20,by=0.02)

> p=dchisq(x,10)

> plot(x,p)

0.06
|

0.04
I

> a=pt(0.8,8)
> a
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[1] 0.7765933

> b=pt(0.5,8,lower.tail=0)
>b

[1] 0.315268

> x=seq(-10,10,by=0.02)
> p=dt(x,8)

0.04 0.06 0.08 0.10
| | | |

0.02
1

0.00
|

> a=pf(0.8,10,10)

> a

[1] 0.3655069

> b=pf(0.5,10,10, lower.tail=0)
> b

[1] 0.8551542

> x=seq(0,10,by=0.02)

> p=df(x,10,10)

> plot(x,p)

08
!

0.4

> a=punif(0.8,0,5)
> a
[1] 0.16
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> b=punif(0.5,0,5,lower.tail=0)
> b

[1] 0.9

> x=seq(0,5,by=0.02)

> p=dunif(x,0,5)

> plot(x,p)

Chap'l'er 7 - Probabi]ii’y and Probabi]i'l'y Distributions
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Chapter 8

Sampling Distribution and Central Limit
Theorem using R

Dr. Rajendra Nana Chavhan, Assistant Professor Department of Statistics,
K. C. College, Churchgate, Mumbai - 400 020.

8.1 Introduction

In this chapter, I have demonstrated the sampling distribution of some well-known statistics
as sample mean, sample variance and sample median. I used Poisson, Normal and
Exponential distributions. I have also demonstrated the central limit theorem using
sampling distributions.

8.2 Sampling Distribution

The sampling distribution of statistic is the distribution of statistic, considered as a random
variable, when derived from random sample of size n. It may be considered as distribution
of the statistic for all possible random samples from the same population of a given size. |
have demonstrated sampling distribution of

Sample mean of discrete random variable with probability function
Sample mean of X~Exp(1.2)

Sample variance of X~N(5,9)

Sample median where X~Poisson(3.1)

»w N

One can extend the study of sampling distributions with other sample statistic and
distributions. This sampling distributions can be used for determining empirical
probabilities.

Procedure for studying the sampling distribution

[ used the simulation technique for studying the sampling distribution of different statistic
using well known discrete as well as continuous probability distributions. [ used sample size
n = 5,10, 25 and 50, and 1000 repetitions. I used following steps

Step 1. Drawing of random sample from considered population.

Step 2. Calculation of sample statistic for different sample size (n = 5, 15, 25 and 50)
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Step 3. Comparison of population value with expected value of sample statistic for
different sample size (n = 5, 15, 25 and 50) i.e. comparison of mean.

Step 4. Comparison of variation of sample statistic for different sample size (n =
5,15, 25 and 50) by studying variance.

Step 5. Drawing of histogram for overall comparison.

8.2.1 Sampling distribution of sample mean of discrete random variable with
probability function

Consider the following probability distribution
X : 0 1 2 3
PX=x) : 01 04 03 02
Here E(X) = 1.6 and Var(X) = 0.84, we study the sampling distribution of sample mean. We
now that E(X) = 1.6 and Var(X) = %. I have written R-Program 1 for studying the

sampling distribution of sample mean for above discrete probability distribution.

R-Program 1: R code for studying Sampling distribution of sample mean of
discrete random variable

set.seed(1) #for producing the same sequence of random variable every time
n=50; #sample size

rep=1000; #repetitions

xv=c(0,1,2,3) #X values

prob=c(0.1,0.4,0.3,0.2) #Probability Values

#random sample from Discrete Distribution
x1l=sample(xv,n*rep, replace = TRUE, prob=prob);

x=matrix(x1, rep,n) #arrangement of random numbers in matrix
s.mean5=rowMeans (x[,1:5]) #sample mean n=5
s.meanl0=rowMeans(x[,1:10]) #sample mean n=10

s.mean25=rowMeans (x[,1:25]) #sample mean n=25

s.mean50=rowMeans (x[,1:50]) #sample mean n=50
s.mean=data.frame(s.mean5,s.meanl0,s.mean25,s.mean50) #bind all means

apply(s.mean,2,mean) ;apply(s.mean,2,var) #Calculation of mean and variance
par(mfrow=c(2,2));

hist(s.mean5,xlab = "(a)",main="n=5");

hist(s.meanl0, xlab "(b)",main="n=10");

hist(s.mean25,xlab = "(c)",main="n=25");

hist(s.mean50,xlab = "(d)",main="n=50")

We put the numerical output of R-Program 1, i.e. five point summary, mean and variance of

sample mean of sizes n = 5,15, 25 and 50 in the Table 1.

Table 1: Descriptive statistics of sample mean of discrete distribution

Sample size(n) | Minimum | Q1 | Q2 | Mean | Q3 | Maximum | Variance
5 0.40 1.20 | 1.60 | 1.572 | 1.80 2.80 0.1719
10 0.80 1.40 | 1.60 | 1.587 | 1.80 2.50 0.0898
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25 1.12 1.44 | 1.60 | 1.587 | 1.72 2.20 0.0358

50 1.14 1.52 | 1.60 | 1.600 | 1.68 2.04 0.0173
One can see that as sample increases mean of sample mean approaches to population mean

0.84
and variances approaches to 0 We can also see the shape of the sample means for

considered sample sizes from Figure 1.

n=5 n=10
_
= 2
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o] ]
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12 14 16 18 20 22 12 14 16 1.8 2.0
(c) (d)

Figure 1: Sampling distribution of sample mean of discrete probability distribution
for sample size (a) n = 5 (b) n = 10 (c) n = 25 and (d) n = 50.

One can observe the overall shape, changing pattern of shape, variation, outliers, Skewness,
outliers etc. of sample mean from Figure 1. We can conclude that mean of sample mean is
concentrating towards the population mean E(X) = 1.6 whereas variation decreases.

8.2.2 Sampling distribution of sample mean where X~N(10, 4)

Here I studied the sampling distribution of sample mean where parent population is normal
with mean 10 and variance 4. I have written the following R-Program 2 for studying
Sampling distribution of sample mean where X~N(10,4).

R-Program 2: R code for studying Sampling distribution of sample mean of
X~N(10,4)

set.seed(25)
n=50;
rep=1000;
xl=rnorm(rep*n,10,2);
x=matrix(x1, rep,n)

#for producing the same sequence of random variable everytime
#sample size

#repetitions

#random sample from Population N(10,4)
#arrangement of random numbers in matrix
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.mean5=rowMeans (x[,1:5])

.meanl@=rowMeans(x[,1:10])
.mean25=rowMeans (x[,1:25])
.mean50=rowMeans (x[,1:50])
.mean=data.frame(s.mean5,s.meanl0,s.mean25,s.mean50) #bind all means

#sample
#sample
#sample
#sample

mean
mean
mean
mean

n=5

n=10
n=25
n=50

summary(s.mean) #gives six point summary(min,Ql,Q2,mean,Q3 and max)

apply(s.mean,2,var) #Calculation of Variance

par(mfrow=c(2,2));

hist(s.mean5,xlab = "(a)",main="n=5");

hist(s.meanl0, xlab
hist(s.mean25, xlab
hist(s.mean50, xlab

"(b)",main="n=10");
"(c)",main="n=25");
"(d)",main="n=50")

n=5
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Figure 2: Sampling distribution of sample mean of X~N(10,4) for sample of sizes
(AJn=5(b)n=10(c)n = 25and (d) n = 50.

Figure 2 shows the histogram for sample mean of sizes (a) n = 5 (b) n = 10 (¢) n = 25 and
(d) n = 50 where parent population is N(10,4). One can observe the frequency distribution,
overall shape of sample mean of normal distribution having mean 10 and variance 4. As

sample size increases, sample mean gets closer to population mean with decrement in
variances and spread. This can be confirmed from descriptive statistics given in Table 2.
Numerical output of R-Program 2, i.e. five point summary, mean and variance of sample
mean of sizesn = 5, 15,25 and 50 is given in the Table 2.

Table 2: Descriptive statistics of sample mean of N(10, 4)

Sample size(n) | Minimum | Q1 Q2 Mean Q3 Maximum | Variance
5 6.630 9.388 | 10.030 | 10.005 | 10.598 12.763 0.817
10 7.625 9.549 | 10.016 | 9.994 | 10.432 11.813 0.407
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25 8.827 9.716 | 9.993 | 9.989 | 10.278 11.050 0.156

50 8.961 9.812 | 10.000 | 10.002 | 10.204 10.971 0.076

8.2.3 Sampling distribution of sample variance where X~Exp(1.2)

Here I studied the sampling distribution of sample variance where sample is drawn from
exponential distribution with parameter 1.2. [ have written the following R-Program 3 for
studying sampling distribution of sample variances where X~Exp(1.2)

R-Program 3: R code for studying Sampling distribution of sample variance of
X~Exp(1.2)

set.seed(25) #for producing the same sequence of random variable every time

n=50; #sample size

rep=1000; #repetitions

xl=rexp(rep*n,1.2);#random sample from Population Exponential with mean=1/1.2

x=matrix(x1,rep,n); #arrangement of random numbers in matrix

s.varS5=apply(x[,1:5],1,var); #sample variance n=5

s.varl@=apply(x[,1:10],1,var); #sample variance n=10

s.var25=apply(x[,1:25],1,var); #sample variance n=25

s.var50=apply(x[,1:50],1,var); #sample variance n=50

s.var=data.frame(s.var5,s.varl0,s.var25,s.var50) #bind all variances

summary(s.var) #gives six point summary(min,Ql,Q2,mean,Q3 and max)

apply(s.var,2,var) #Calculation of Variance

par(mfrow=c(2,2));

hist(s.var5,xlab = "(a)",main="n=5");

hist(s.varl0,xlab = "(b)",main="n=10");
hist(s.var25,xlab = "(c)",main="n=25");
hist(s.var50,xlab = "(d)",main="n=50")

Numerical output of R-Program 3, i.e. five point summary, mean and variance of sample
variance of Exp(1.2) of sizesn = 5,15, 25 and 50 is given in the Table 3.

Table 3: Descriptive statistics of sample variance of Exp(1.2)

Sample size(n) | Minimum | Q1 Q2 | Mean | Q3 | Maximum | Variance
5 0.004 0.182 | 0.398 | 0.692 | 0.829 | 14.281 0.914
10 0.029 0.301 | 0.500 | 0.678 | 0.852 7.894 0.405
25 0.128 0.416 | 0.613 | 0.697 | 0.844 3.696 0.171
50 0.194 0.494 | 0.649 | 0.695 | 0.831 2.267 0.080

Figure 3 shows the histogram of sample variance of sizes (a)n = 5 (b) n = 10 (¢)n = 25 and
(d) n = 50 where parent population is exponential with parameter 1.2. From Figure 3, one
can see that distribution of sample variance is positively skewed.
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Figure 3: Sampling distribution of sample variance of X~Exp(1.2) for sample of
sizes(a)n =5 (b) n =10 (c) n = 25 and (d) n = 50.

8.2.4 Sampling distribution of sample median where X~Pois(3.1):

Here I studied the sampling distribution of sample median where sample is drawn from
Poisson distribution with mean 3.1. I have written the following R-Program 4 for studying
sampling distribution of sample median where X~Pois(3.1).

R-Program 4: R code for studying sampling distribution of sample median of
X~Pois (3.1)

set.seed(25) #for producing the same sequence of random variable every time

n=50; #sample size

rep=1000; #repetitions

xl=rpois(rep*n,3.1); #random sample from Population Poisson with mean=3.1
x=matrix(x1, rep,n); #arrangement of random numbers in matrix
s.med5=apply(x[,1:5],1,median); #sample median n=5
s.med10=apply(x[,1:10],1,median); #sample median n=10
s.med25=apply(x[,1:25],1,median); #sample median n=25
s.med50=apply(x[,1:50],1,median); #sample median n=50
s.med=data.frame(s.med5,s.medl0,s.med25,s.med50) #bind all Medians

summary(s.med) #gives six point summary(min,Ql,Q2,mean,Q3 and max)
apply(s.med,2,var) #Calculation of Variance

par(mfrow=c(2,2));

hist(s.med5,xlab = "(a)",main="n=5");

hist(s.med10,xlab = "(b)",main="n=10");

hist(s.med25,xlab = "(c)",main="n=25");

hist(s.med50,xlab = "(d)",main="n=50")
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Table 3 contains the descriptive statistics of sample median for different sample sizes
obtained from numerical output of R-Program 4.

Table 3: Descriptive statistics of sample median of Poiss(3.1)

Sample size(n) | Minimum | Q1 | Q2 | Mean | Q3 | Maximum | Variance
5 1 2 | 32976 4 6 0.9624
10 1 25| 3 12944 | 3.5 5.5 0.4783
25 2 3|13 1(2924| 3 5 0.2605
50 2 3 |1 3(2943| 3 4 0.1082

Figure 4 shows histogram of sample median of Poisson with mean 3.1 which shows

frequency distribution of sample median.
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Figure 4: Sampling distribution of sample median of X~Pois(3.1) for sample of

sizes(aQ)n =5(b)n =10 (c) n = 25 and (d) n = 50.

8.3 Central Limit Theorem (CLT)

.. X, isarandom sample of size n (large) from any probability distribution (either
sy Xi

If X, X, ...

discrete or continuous) with finite mean y and variance o?then sample mean X = will
2

tends to normal distribution with mean u and variance % Here I demonstrated the CLT for

the following probability distributions
1. Negative Binomial Distribution
2. Continuous Uniform Distribution
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[ used n = 10,50, 100 and 250 for demonstration. Shapiro test is used to test normality. [
have also plot histogram along with normal curve to asses the normality.

8.3.1 Negative Binomial Distribution

Consider X4, X5... X;, is random sample from negative binomial with k = 5 and p = 0.7. Here
X represents the number of failure before k sucusses. [ have written the following R-Program
5 for studying sampling distribution of sample mean and to demonstrate the CLT where

X~NB(5,0.7).

R-Program 5: R code for demonstration of CLT of X~NB(5,0.7)

set.seed(5) #for producing the same sequence of random variable every time
n=250; #sample size

rep=1000; #repetitions

x1=rnbinom(rep*n,5,0.7); #random sample from Negative Binomial k=5, p=0.7
x=matrix(x1, rep,n); #arrangement of random numbers in matrix
s.meanl@=apply(x[,1:10],1,mean); #sample mean n=10
s.mean50=apply(x[,1:50],1,mean); #sample mean n=50
s.meanl00=apply(x[,1:100],1,mean); #sample mean n=100
s.mean250=apply(x[,1:250],1,mean); #sample mean n=250
ntlO=shapiro.test(s.meanl0); #Normality test of sample mean n=10
nt50=shapiro.test(s.mean50); #Normality test of sample mean n=50
ntl00=shapiro.test(s.meanl0); #Normality test of sample mean n=100
nt250=shapiro.test(s.mean250); #Normality test of sample mean n=250

#P-value of the normality test
print(c(ntl0$p.value,nt50$p.value,ntl00$p.value,nt250$p.value))
#Function from plotting Histogram with Normal curve
hist_curve<-function(x){
N=length(x);H=hist(x,breaks=50,xlab="",main="");dx=(H$breaks[2]-
H$breaks[1]);
x0=H$breaks;x1l=c(x0[1]-dx/2,x0+dx/2);
lines(x1,N*dnorm(x1,mean(x),sd(x))*dx, col="blue")
}
par(mfrow=c(2,2));
hist_curve(s.meanl0);title(main="n=10",xlab="(a)");
hist_curve(s.mean50);title(main="n=50",xlab="(b)");
hist_curve(s.meanl00);title(main="n=100",xlab="(c)");
hist_curve(s.mean250);title(main="n=250",xlab="(d)");

Table 5 shows the P-value of Shapiro test of normality.

Table 5: P-value for Shapiro test of normality
Sample size(n) 10 50 100 250

P-value 0.0000 | 0.1241 | 0.3139 | 0.7999
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CLT hold for n = 50,100,250 which can be confirmed from P-value given in Table 5. In
Figure 5, [ used to draw histogram with normal curve. One can see the normal curve fits well
for (b) n=50, (c) n=100 and (d) n=250. As sample size increases normal curve fits well.
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Figure 5: Sampling distribution of sample mean with normal curve of
X~NB(5,0.7) for sample of sizes (a) n = 10 (b) n = 50 (c) n = 100 and
(d) n = 250.

8.3.2 Continuous uniform distribution

Consider X;,X;... X;, is random sample from continuous uniform distribution in the
interval (0, 10). I have written the following R-Program 6 for studying sampling distribution
of sample mean and to demonstrate the CLT where X~U (0, 10).

R-Program 6: R code for demonstration of CLT of X~U(0,10)
set.seed(50) #for producing the same sequence of random variable every time
n=250; #sample size

rep=1000; #repetation

x1l=runif(rep*n,0,10); #random sample from Negative Binomial k=5, p=0.7
x=matrix(x1,rep,n); #arrangment of random numbers in matrix
s.meanlO@=apply(x[,1:10],1,mean); #sample mean n=10
s.mean50=apply(x[,1:50],1,mean); #sample mean n=50
s.meanl00=apply(x[,1:100],1,mean); #sample mean n=100
s.mean250=apply(x[,1:250],1,mean); #sample mean n=250
ntl0=shapiro.test(s.meanl0); #Normality test of sample mean n=10
nt50=shapiro.test(s.mean50); #Normality test of sample mean n=50
ntl00=shapiro.test(s.meanl00); #Normality test of sample mean n=100

nt250=shapiro.test(s.mean250); #Normality test of sample mean n=250
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p-value=c(ntl0$p.value,nt50$p.value,ntl00$p.value,nt250$p.value) #P-value of
the normality test
#Function from plotting Histogram with Normal curve
hist_curve<-function(x){
N=1length(x) ;H=hist(x,breaks=50,xlab="",main="") ;dx=(H$breaks[2] -
H$breaks[1]);
x0=H$breaks;x1l=c(x0[1]-dx/2,x0+dx/2);
lines(x1,N*dnorm(x1,mean(x),sd(x))*dx, col="blue")
}
par(mfrow=c(2,2));
hist_curve(s.meanl0);title(main="n=10",xlab="(a)");
hist_curve(s.mean50);title(main="n=50",xlab="(b)");
hist_curve(s.meanl00);title(main="n=100",xlab="(c)");
hist_curve(s.mean250);title(main="n=250", xlab="(d)")

Table 6 shows the P-value of Shapiro test of normality.

Table 6: P-value for Shapiro test of normality
Sample size(n) 10 50 100 250
P-value 0.0348 | 0.2414 | 0.2984 | 0.3321

CLT hold for n = 50,100,250 which can be confirmed from P-value given in Table 6. In
Figure 6, I used to draw histogram with normal curve. One can see the normal curve fits well
for (b) n=50, (c) n=100 and (d) n=250. As sample size increases normal curve fits well.
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Figure 6: Sampling distribution of sample mean with normal curve of X~U(0,10)
for sample of sizes (a) n = 10 (b) n = 50 (c) n = 100 and (d) n = 250.
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8.4 Some important notes

e One can extend the study of sampling distributions with other sample statistic and
distributions.

e This sampling distributions can be used for determining empirical probabilities.

e One can verify the other results like CLT.

e Sampling distributions of complicated statistic can be studied.

8.5 References

e Verzani, ]. (2014). Using R for introductory statistics. CRC Press.
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Chapter 9

Statistical Tests Using R

Dr. Rajendra Nana Chavhan, Assistant Professor, Department of Statistics,
K. C. College, Churchgate, Mumbai - 400 020.

9.1 Introduction

In this chapter, | have demonstrated the one sample t-test, two sample t-test, paired t-test,
chi-square test for variance, F-test for equality of two variances with example in R
programming. This article is useful for students, teachers and researchers in applied
sciences.

0.2 t-test

9.2.1 One sample t-test

One sample t-test is used to investigate whether population mean (i) is regarded as some
specified value p,, based on a random sample. That is, to test the significance of the
difference between the sample mean (X) and the assumed population mean p,. We assume
population from which, the sample of size n drawn is Normal distribution whose population
mean is unknown. We test one of the following null hypothesis (H,) and alternative
hypothesis (H;) at a level of significance.

a) H, : There is no significant difference between the sample mean X and the assumed

population mean p.i.e, Hy: n = pgvsHy: u # U
b) Hy: u< povsHy: p> o
¢) Ho: u=po vsHy: < o

The test statistic for testing the above hypothesis is

poiTH
-G/
— n_x; ~ Ney.—%)2
Where X = 22151 44 62 = g2 = 2%
n n-1

Under H,, the test statistic follows t distribution with (n — 1) degrees of freedom. We take
the decision whether to reject the null hypothesis or not based on P-value. If P-value < «
then we rejects the null hypothesis and if P-value > « then we does not enough evidence to
reject the null hypothesis. The P-value is calculated as
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For a)H;: u # W, P-value=2 x P(T > |t])
b) Hy: u> uyy, P-value=P(T > t)
) Hy: u< pp, P-value=P(T < t)

where T follows t distribution with (n — 1) degrees of freedom.
9.2.2 Two sample t-test

Two sample t-test is used to investigate the null hypothesis of the difference between mean
of the two populations is some constant value, based on two random samples. We assume
that the populations from which, the two samples drawn, are Normal distributions which
have unknown and same variance. A random sample of size m observations X;, X5, ..., X,,, be
drawn from population with unknown mean g, and a random sample of size n observations
Y1, Y, ..., Y, be drawn from population with unknown mean u,. We assume that both the
populations have equal variances. We test one of the following null hypothesis (H,) and
alternative hypothesis (H;) at a level of significance.

a) H, : The difference between two population mean is some constant value c. i.e. Hy:

Pa— Hp=CVSHy: g — pp #¢
b) Ho: s — up <cvs Hy: g — pp >
¢) Hot pa— pp=cvs Hytpy — pp <c

The test statistic for testing the above hypothesis is
X =) = (=)

s G

t

where X = Liz1 Xi Y = Lim1Yi and S2 = T Xi=X) 2+ 3T, (Vi=T)?
m ’ n

m4+n-—2

Under H,, the test statistic follows t distribution with (m + n — 2) degrees of freedom. The
P-value is calculated as

For a) Hy: pu— Uy #¢, P-value=2 x P(T > |t|)
b) Hy: g — U, >c, P-value=P(T > t)
c) Hi: up— Uy <c, P-value=P(T < t)

where T follows t distribution with (m + n — 2) degrees of freedom.

If the assumption of equality of variance of two samples does not hold then the test statistics
for testing the null hypothesis is

_ X =1 — ()

G

t
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m n m v\ 2 n v\ 2
G i—1Xi T i=1 7Y Yic1(Xi—X) i=1(Yi=Y)
where X = =511y = =21 L,Slz ===t andSZ2 ===t -

Under H, : p; — Uy = ¢, the test statistic follows t distribution with v degrees of freedom
)
m n
ST, %
m2(m-1) n?(n-1)

Method of calculation of P-value is same as per two sample t-test.

where v = . This t-test commonly known as Welch Two Sample t-test.

9.2.3 Paired t-test

Paired t-test is used to investigate the significance of the difference between before and after
the treatment in the sample. Let X3, X;, ... X,, be the observations made initially from n
individuals as a random sample of size n. A treatment is applied to the above individuals and
observations are made after the treatment and are denoted by V;,Ys, ..., Y,,. That is, (X;,Y;)
denotes the pair of observations obtained from the ith individual, before and after the
treatment applied. Let uy is unknown population mean before the treatment and py is the
unknown population mean after the treatment. We assume that the populations from which,
the two samples drawn, are Normal distribution and observations are collected in a pair. We
test one of the following null hypothesis (Hy) and alternative hypothesis (H;) at a level of
significance.

a) H,:Thereisno significant difference between before and after the treatment applied.

i.e. treatment applied, is ineffective.i.e, Hy : gy = pux — Uy =cvsHy: ug # ¢
b) Hy: pug <0OvsH;: us; > c
c) Hy: uyg=0vsH;: pyg < c

The test statistic for testing the above hypothesis is
d—pg

 Sg/Nn

- nod: Hdi—ad)?
where d = %,di = X; — Y;and S? =%

Under H,, the test statistic follows t distribution with (n — 1) degrees of freedom. The P-
value is calculated as

For a) Hy: ug #c, P-value=2 x P(T > |t|)
b) Hy: pug > c, P-value=P(T > t)
c) Hi:uyg<c P-value=P(T < t)

where T follows t distribution with (n — 1) degrees of freedom.
In R programming, the t.test( ) function produces the variety of t-tests. We will discuss the
different t-tests by following Example 1, 2 and 3.
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Example 1 (One Sample t-test): A sample of 13 students from a government school has the
following scores in a test.

89 88 78 76 78 78 86 83 82 76 72 77 92.

Do this data support that i) the mean mark of the school students is 807 Test at 5% level.

ii) the mean mark of the school students is more than 75?7 Test at 1% level.

iii) the mean mark of the school students is less than 857 Test at 10% level.

Solution:

i) Here we test, Hy : u = 80 against H, : u # 80.
x=c(89,88,78,76,78,78,86,83,82,76,72,77,92) #data

t.test(x,mu=80) #by default alternative is two sided and level is 5%

Output

One Sample t-test

data: x

t = 0.68885, df = 12, p-value = 0.504

alternative hypothesis: true mean is not equal to 80
95 percent confidence interval:

77.50427 84.80342

sample estimates:

mean of x

81.15385

R Output gives the test statistic t, degrees of freedom and P-value.

Here P-value is 0.504>0.05, hence we do not have enough evidence to reject H, (i.e.
Accept Hy). Output also gives additional information about the confidence interval with
sample estimate of p. Here 95% confidence interval is (77.50427, 84.80342) which also
support the decision taken from P-value as 80 is included in the confidence interval.

ii) Here we test, Hy : u < 75 against Hy : pu > 75.
x=c(89,88,78,76,78,78,86,83,82,76,72,77,92) #data

t.test(x,mu=75,alternative = "greater",cof.level=0.99)

Output
One Sample t-test

data: x

t = 3.6739, df = 12, p-value = 0.001592

alternative hypothesis: true mean is greater than 75
95 percent confidence interval:

78.16846 Inf
sample estimates:
mean of X

81.15385

Here P-value is 0.001592<0.01, hence we reject H, (i.e. Accept H,). Output also gives one
sided confidence interval with sample estimate of u which support the decision taken from
P-value.

iii) Here we test, Hy : @ = 85 against H; : u < 85.
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x=c(89,88,78,76,78,78,86,83,82,76,72,77,92)
t.test(x,mu=85,alternative = "less",cof.level=0.9)

Output:
One Sample t-test

data: x
t = -2.2962, df = 12, p-value = 0.02024
alternative hypothesis: true mean is less than 85
95 percent confidence interval:
-Inf 84.13923

sample estimates:
mean of X

81.15385

Here P-value is 0.02024<0.1, hence we reject H, (i.e. Accept H;). Output also gives one sided
confidence interval with sample estimate of ¢ which support the decision taken from P-
value.

Example 2 (Two Sample t-test): The yield of two varieties of mango (in tons) on two
independent sample of 10 and 12 plants are given below.
Variety-A: 22 24 26 23 26 30 32 34

Variety-B: 28 25 26 30 32 30 33 28 30 35

i) Test whether the yield of Variety-A is not equal to Variety-B at 2% level of significance.

ii) Test whether the difference between yield of Variety-A is less than Variety-B by 2 tones
at 5% level of significance.

iii) Test whether the difference between yield of Variety-A is more than Variety-B by 0.5
tones at 10% level of significance.

iv) Test whether the yield of Variety-A is not equal to Variety-B at 5% level of significance
assume unequal variances of both samples.

Solution:

i) Here we test, Hy: iy — 1, = O against Hy:pq — pp # 0
x=c(22,24,26,23,26,30,32,34) #first sample data
y=c(28,25,26,30,32,30,33,28,30,35) #second sample data

t.test(x,y,var.equal = TRUE, conf.level = 0.98)
#by default c=0 and alternative
#hypothesis is two sided

Output:
Two Sample t-test
data: x and y
t = -1.4607, df = 16, p-value = 0.1634
alternative hypothesis: true difference in means is not equal to 0
98 percent confidence interval:

-7.129169 1.979169
sample estimates:
mean of X mean of y

27.125 29.700
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Here P-value is 0.1634>0.02, hence we do not have enough evidence to reject H,, (i.e. Accept
H,). Output also give confidence interval of difference of means with sample estimates of u,
and p, which support the decision taken from P-value.

ii) Here we test, Hy: 4y — 4, = 2 against Hy: g — p, < 2

x=c(22,24,26,23,26,30,32,34) #first sample data
y=c(28,25,26,30,32,30,33,28,30,35) #second sample data
t.test(x,y,var.equal = TRUE, mu=2,alternative = "less", conf.level = 0.95)

Output:
Two Sample t-test

data: x and y
t = -2.5953, df = 16, p-value = 0.009763
alternative hypothesis: true difference in means is less than 2
95 percent confidence interval:
-Inf 0.5026423

sample estimates:
mean of x mean of y

27.125 29.700

Here P-value is 0.009763<0.05, hence we reject H, (i.e. Accept H,). Output also gives one
sided confidence interval of difference of means with sample estimates of y; and y, which
support the decision taken from P-value.

iii) Here we test, Hy: 3 — U, < 0.5 against Hy: gy — pu, > 0.5
x=c(22,24,26,23,26,30,32,34) #first sample data
y=c(28,25,26,30,32,30,33,28,30,35) #second sample data
t.test(x,y,var.equal = TRUE, mu=0.5,alternative = "greater", conf.level = 0.9)

Output:
Two Sample t-test
data: x and y
t = -1.7444, df = 16, p-value = 0.9499
alternative hypothesis: true difference in means is greater than 0.5
90 percent confidence interval:

-4.931434 Inf
sample estimates:
mean of x mean of y

27.125 29.700

Here P-value is 0.9499>0.1, hence we do not have enough evidence to reject H, (i.e. Accept
H,). Output also give confidence interval of difference of means with sample estimates of u
and yu, which support the decision taken from P-value.

iv) Here we test, Hy: uy — u, = 0 against Hy: 4 — pp # 0 where assumption of equality of

variance of two sample does not hold.
x=c(22,24,26,23,26,30,32,34) #first sample data
y=c(28,25,26,30,32,30,33,28,30,35) #second sample data
t.test(x,y) #by default c=0, alternative hypothesis is two sided and los=5%
#by default variances are not equal
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Output:
Welch Two Sample t-test

data: x and y
t = -1.4037, df = 12.172, p-value = 0.1854
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-6.565645 1.415645
sample estimates:
mean of x mean of y

27.125 29.700

Here P-value is 0.1854>0.05, hence we do not have evidence to reject H, (i.e. Accept Hy).
Output also give confidence interval of difference of means with sample estimates of y; and
U, which support the decision taken from P-value.

Example 3 (Paired t-test): A new variety of health drink in the market for weight of infants.
A sample of 10 babies was selected and was given the above diet for a month and the weights
were observed before (X) and after (Y) the diet given.
X: 66 685 675 72 6.75 6.65 6.7 73 69 6.6
Y: 69 73 7 76 685 73 6.7 745 73 6.5
i) Examine whether there is significant difference between before and after the healthy
drink diet at 5% level of significance.
ii) Examine whether the weight gain after the healthy drink diet is more than 0.2 kg at 1%
level of significance.
iii) Examine whether the weight loss after the healthy drink diet is less than 0.5 kg at 10%
level of significance.

Solution:

i) Here wetest, Hy: ug = y — ty = O against Hy: yuy # 0
x=c(6.6,6.85,6.75,7.2,6.75,6.65,6.7,7.3,6.9,6.6) #Before Treatment Data
y=c(6.9,7.3,7,7.6,6.85,7.3,6.7,7.45,7.3,6.5) #After Treatment Data
t.test(x,y,paired = TRUE) #by default c=0, alternative is two sided and los=5%

Output:
Paired t-test
data: x and y
t = -3.6211, df = 9, p-value = 0.005563
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.42242786 -0.09757214
sample estimates:
mean of the differences
-0.26

Here P-value is 0.005563<0.05, hence we reject H, (i.e. Accept H;). Output also gives
confidence interval and sample estimate of u; which also support the decision taken from P-
value.



Ano.lyzing and Visuo.lizing Data with R Software - A Practical Manual

Chapter 9 - Statistical Tests Using R

ii) Here we test, Hy: g = txy — py < 0.2 against Hy: g > 0.2
x=c(6.6,6.85,6.75,7.2,6.75,6.65,6.7,7.3,6.9,6.6) #Before Treatment Data
y=c(6.9,7.3,7,7.6,6.85,7.3,6.7,7.45,7.3,6.5) #After Treatment Data
t.test(x,y,paired = TRUE,mu=0.2,conf.level = 0.99,alternative = "greater")

Output:
Paired t-test

data: x and y
t = -6.4065, df = 9, p-value = 0.9999
alternative hypothesis: true difference in means is greater than 0.2
99 percent confidence interval:

-0.4625854 Inf
sample estimates:
mean of the differences

-0.26

Here P-value is 0.9999>0.01, hence we do not have evidence to reject H, (i.e. Accept Hy).
Output also gives confidence interval and sample estimate of y; which also support the

decision taken from P-value.

iii) Here we test, Hy: g = Uy — iy = 0.5 against Hy: py < 0.5
x=c(6.6,6.85,6.75,7.2,6.75,6.65,6.7,7.3,6.9,6.6) #Before Treatment Data
y=c(6.9,7.3,7,7.6,6.85,7.3,6.7,7.45,7.3,6.5) #After Treatment Data
t.test(x,y,paired = TRUE,mu=0.5,conf.level = 0.9,alternative = "less")

Output:
Paired t-test

data: x and y
t = -10.585, df = 9, p-value = 1.113e-06
alternative hypothesis: true difference in means is less than 0.5
90 percent confidence interval:
-Inf -0.1606955
sample estimates:
mean of the differences
-0.26

Here P-value is <0.1, hence we reject H;, (i.e. Accept H;). Output also gives confidence interval
and sample estimate of u; which also support the decision taken from P-value.

9.3 Chi-square Test for Variance:

Chi-square test for variance is used to test the population variance o2 regarded as ¢ based
on a random sample of size n which is drawn from normal population with mean u and
variance ¢ (both p and o2 are unknown) . We investigate the significance of the difference
between the assumed population variance o2 and the sample variance. We test one of the
following null hypothesis (H,) and alternative hypothesis (H;) at a level of significance.

a) H, : There is no significant difference between the sample variance S? and the

assumed population variance . i.e., Hy : 62 = oZ vs H, : 0% # d¢
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b) Hy: 02 < o2vs Hy: 0% > d?
c) Hy: 02> 62vsH;:0%< o}
The test statistic for testing the above hypothesis is
, (m—1)s?
= 2
99

Where X = Zita X and $% = 2 iz X)?
n n-1
Under H,, the test statistic follows y? distribution with (n — 1) degrees of freedom. We take
the decision whether to reject the null hypothesis or not based on P-value. If P-value < «
then we reject the null hypothesis and if P-value > a then we do not enough evidence to
reject the null hypothesis. The P-value is calculated as
For a)H;: 0% # 62, P-value=2x (1—P(x2_;<x?)
b) H,: 6?>> of, P-value=P(y2_; > x?%)
c)Hy: 0% < a&, P-value=P(y3_, < x?)
Where y? follows y? distribution with (n — 1) degrees of freedom (i.e.. yZ_,).
Z?=1(Xi—li)2
2

= and is follows y? distribution with n
0

If u is known then test statistic is )(2 =

degrees of freedom (i.e.. y2).

In R programming, there is no inbuilt function for chi-square test for variance testing. Here
we write the code in R, as per discussed procedure. We discuss the code with the following
example 4 and 5.

Example 4: A lifetime of a certain brand of bulb (in hours) produced by his company is as
follows
3360 3720 3300 3420 3240 3420 3450 3540 3750 3780
i) Test whether the variance is 30000 or not at 5% level.
ii) Test whether the variance is more than 20000 at 10% level.
iii) Test whether the variance is less than 33000 at 2% level.

Solution:
i) Here we test, Hy : 62 = ¢¢ = 30000 against Hy : d? # g2 = 30000
x=c(3360,3720,3300,3420,3240,3420,3450,3540,3750,3780) #data

$.2=33000; #assumed population variance
n=length(x) #size of data
chisgare.stat=(n-1)*var(x)/s.2; #test statistic

#Calculation of p-value here alternative is two sided
if (qchisq(alp/2,n-1)<chisqgare.stat)
{p.value=pchisq(chisqare.stat,n-1)}else
{p.value=pchisq(chisqare.stat,n-1)}

# Output
cat("\t \t Chi-square Test for Variance\n",
"alternative hypothesis: true variance is not equal to" , s.2,"\n",

"test statistic=",chisqare.stat, "\t", "df=",n-1,"\t","p-value=",p.value);
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Output:

Chi-square Test for Variance
alternative hypothesis: true variance is not equal to 33000
test statistic= 10.10182 df= 9 p-value= 0.6846111

Here P-value is 0.6846111>0.05, hence we do not have enough evidence to reject H, (i.e.
Accept Hy).

ii) Here we test, Hy : 0% < g¢ = 20000 against H, : 0% > a¢ = 20000
x=c(3360,3720,3300,3420,3240,3420,3450,3540,3750,3780) #data

$.2=20000; #assumed population variance
n=length (x) #size of data
chisqare.stat=(n-1)*var(x)/s.2; #test statistic

#Calculation of p-value here alternative is greater than type
p.value=1l-pchisq(chisqare.stat,n-1);

# Output
cat("\t \t Chi-square Test for Variance\n",
"alternative hypothesis: true variance greater than" , s.2,"\n",

"test statistic=",chisqgare.stat, "\t", "df=",n-1,"\t","p-value=",p.value);

Output:
Chi-square Test for Variance
alternative hypothesis: true variance greater than 20000
test statistic= 16.668 df= 9 p-value= 0.05417611

Here P-value is 0.05417611<0.1, hence we reject H, (i.e. Accept H,).
iii) Here we test, Hy : 02 = o2 = 35000 against H, : 02 < oZ = 35000
x=c(3360,3720,3300,3420,3240,3420,3450,3540,3750,3780) #data

s.2=40000; #assumed population
variance

n=1length(x) #size of data
chisgare.stat=(n-1)*var(x)/s.2; #itest statistic

#Calculation of p-value here alterrnative is less than type
p.value=pchisq(chisqare.stat,n-1);

# Output
cat("\t \t Chi-square Test for Variance\n",
"alternative hypothesis: true variance less than" , s.2,"\n",

"test statistic=",chisqgare.stat, "\t", "df=",n-1,"\t","p-value=",p.value);

Output:

Chi-square Test for Variance
alternative hypothesis: true variance less than 40000
test statistic= 8.334 df= 9 p-value= 0.4991312

Here P-value is 0.4991312>0.02, hence we do not have enough evidence to reject H, (i.e.
Accept Hy).

Example 5: A average yield of mango is 650 per mango tree and random sample of 10 mango
trees has the following yield in a year:

760 650 640 560 580 540 620 680 760 780
i) Test whether variance is 6500 or not at 1% level of significance.
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ii) Test whether variance is more than 7500 at 5% level of significance.
iii) Test whether variance is less than 4500 at 10% level of significance.

Solution:
i) Here uis known and we test, Hy : 62 = ¢¢ = 6500 against H, : 02 # of = 6500
x=c(760,650,640,560,580,540,620,680,760,780) #data

mu=650; #population mean

$.2=6500; #assumed population variance
n=length(x) #size of data
chisqare.stat=sum((x-mu)~2)/s.2; #test statistic

#Calculation of p-value here alternative is two sided
p.value=2*(1-pchisq(chisqare.stat,n))

# Output
cat("\t \t Chi-square Test for Variance\n",
"alternative hypothesis: true variance is not equal to" , s.2,"\n",

"test statistic=",chisqgare.stat, "\t", "df=",n,"\t","p-value=",p.value);

Output:
Chi-square Test for Variance
alternative hypothesis: true variance is not equal to 6500
test statistic= 10.47692 df= 10 p-value= 0.7993858
Here P-value is 0.7993858>0.01, hence we do not have evidence to reject H, (i.e. Accept Hy).
ii) Here u is known and we test, Hy : 2 < o¢ = 7500 against H, : 0% = o§ > 7500
x=c(760,650,640,560,580,540,620,680,760,780) #data

mu=650; #population mean

s.2=7500; #assumed population variance
n=length(x) #size of data
chisqare.stat=sum((x-mu)”2)/s.2; #test statistic

#Calculation of p-value here alternative is greater than type
p.value=1-pchisq(chisqare.stat,n);

# Output
cat("\t \t Chi-square Test for Variance\n",
"alternative hypothesis: true variance is greater than"™ , s.2,"\n",

"test statistic=",chisgare.stat, "\t", "df=",n,"\t","p-value=",p.value);

Output:
Chi-square Test for Variance
alternative hypothesis: true variance is greater than 7500
test statistic= 9.08 df= 10 p-value= 0.5245285
Here P-value is 0.5245285>0.05, hence we do not have evidence to reject H (i.e. Accept Hy).
iii) Here u is known and we test, Hy : 2 > ¢ = 4500 against H, : 0% = g < 4500
x=c(760,650,640,560,580,540,620,680,760,780) #data

mu=650; #population mean

s.2=4500; #assumed population variance
n=length(x) #size of data
chisqare.stat=sum((x-mu)~2)/s.2; #test statistic

#Calculation of p-value here alternative is less than type
p.value=pchisq(chisqare.stat,n);

# Output

cat("\t \t Chi-square Test for Variance\n",
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"alternative hypothesis: true variance is less than" , s.2,"\n",
"test statistic=",chisqare.stat, "\t", "df=",n,"\t","p-value=",p.value);

Output:

Chi-square Test for Variance
alternative hypothesis: true variance is less than 4500
test statistic= 15.13333 df= 10 p-value= 0.8727241

Here P-value is 0.8727241>0.1, hence we do not have evidence to reject H, (i.e. Accept Hy).

9.4 F-test for equality of two variances:

F-test is used to test the variances of the two populations are equal, based on two random
samples. We assume that the populations from which, the two samples drawn, are Normal
distributions. A random sample of size m observations X;, X5, ...,X;, be drawn from
population with unknown variance ¢? and a random sample of size n observations
Y1, Y,, ..., Y, be drawn from population with unknown variance o;. We test one of the
following null hypothesis (Hy) and alternative hypothesis (H;) at a level of significance.

a) H, : There is no difference between two population variance i.e. Hy: 07 = 04 vs

H,: o} # o7

b) Hy: of < o vs Hy : o} > of

¢) Hy: 6f = 0Zvs H; :0f < o}

SZ
The test statistic for testing the above hypothesisis F = 5—12
2

m (X;—X)? n(Yi-7)? = m . — n oy

Where 512 e M’SZZ — Zl—l( 1 ) X — 21_1 l, and_ Y — i=1 l,

Under H, : 62 = 0%, the test statistic F follows F distribution with (m — 1,n — 1) degrees
of freedom. We take the decision whether to reject the null hypothesis or not based on P-
value. If P-value < «a then we reject the null hypothesis and if P-value > « then we do not
enough evidence to reject the null hypothesis. The P-value is calculated as

For a) H,: ¢} # o2, P-value= 2 X (1 — P(Fim-1n-1) < F))
b) H,: of > a3, P-value=P(Fun-1n-1) > F)
c) Hy: of < a, P-value=P(Fn-1n-1) < F)

Where F follows F distribution with (m — 1,n — 1) degrees of freedom.
In R programming, there is inbuilt function var.test() for F test for testing equality of two
variances. We will demonstrate the var.test() function by Example 6.

Example 6: The yield of two varieties of mango (in tons) on two independent sample of 10
and 12 plants are given below.
Variety-A: 22 24 26 23 26 30 32 34
Variety-B: 28 25 26 30 32 30 33 28 30 35
i) Test whether the variance of variety-A is not equal to Variety-B at 5% level of
significance.
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ii) Test whether the variance of variety-A is greater than Variety-B at 10% level of
significance.
iii) Test whether the variance of variety-A is less than Variety-B at 1% level of significance.

Solution:

i) Here we test Hy : of = o4 against H;: 6 # 0%
X=c(22,24,26,23,26,30,32,34) #first sample data
y=c(28,25,26,30,32,30,33,28,30,35) #second sample data
var.test(x,y) #by default alternative is two sided and los=5%
Output:

F test to compare two variances

data: x and y
F = 2.0141, num df = 7, denom df = 9, p-value = 0.3238
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.4798759 9.7142569
sample estimates:
ratio of variances
2.014062

Here P-value is 0.3238>0.05, Hence we do not have enough evidence to reject Hy.(i.e. Accept
Hy). Output also gives 95% confidence interval for ratio of variance with their sample
estimates which also support the decision taken from P-value.

ii) Here we test Hy : of < o7 against H;: 0f > 0%

x=c(22,24,26,23,26,30,32,34) #first sample data
y=c(28,25,26,30,32,30,33,28,30,35) #second sample data
var.test(x,y,alternative = "greater",conf.level = 0.9)

Output:

F test to compare two variances

data: x and y
F = 2.0141, num df = 7, denom df = 9, p-value = 0.1619
alternative hypothesis: true ratio of variances is greater than 1
90 percent confidence interval:
0.8039161 Inf
sample estimates:
ratio of variances
2.014062

Here P-value is 0.1639>0.10, Hence we do not have enough evidence to reject Hy.(i.e. Accept
Hy).

iii) Here we test H, : of = o7 against H,: 0% < o2
x=c(22,24,26,23,26,30,32,34) #first sample data
y=c(28,25,26,30,32,30,33,28,30,35) #second sample data

var.test(x,y,alternative = "less", conf.level = 0.99)
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Output:
F test to compare two variances

data: x and y
F = 2.0141, num df = 7, denom df = 9, p-value = 0.8381
alternative hypothesis: true ratio of variances is less than 1
99 percent confidence interval:

0.00000 13.53198
sample estimates:
ratio of variances

2.014062

Here P-value is 0.8381>0.01, Hence we do not have enough evidence to reject Hy.(i.e. Accept
Hy).

9.5 References:

e Verzani, J. (2014). Using R for introductory statistics. CRC Press.
e Rajagopalan V. (2006). Selected Statistical Tests. New Age International (P) limited,
Publishers
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Chapter 12

Analysis of Varince (ANOVA) using R

Dr. Kalpana Dilip Phal, Associate Professor and Head,
B.N.Bandodkar College of Science, Thane, Chendani Thane (West) 400601.

12.1 Introduction

In this chapter a very popular statistical tool namely Analysis of variance(ANOVA) has been
explained . Statistical analysis of i)One way classified data or ii)Two way classified data is
explained and with the help of R code the execution is shown, together with interpretations
of R output.

12.2 ANOVA

Test of significance for the difference between two population means can be carried out
using t-test, under certain set of assumptions .But in many situations like biological or
agricultural experiments we come upon a problem of comparing more than 2 population
means. For example effect of different conditions on seed germination is same or does it
differ significantly? Different types of feed on animals do have same gain in weight? etc. We
are also interested in knowing what is the effect of various independent factors on the
response or dependent variable. For example How yield of paddy crop responses towards
different fertilizers used such as vermi compost, bio compost or chemical fertilizers.
Analysis of variance is a powerful tool for both of these purposes.

Variations in observations of a data set is inherited. According to father of Dr. R. A. Fisher the
causes of these variations may be broadly classified as assignable and chance causes. In
anova the estimate of total variations are split up into variations due to various independent
factors Some of which are assignable and remaining variation is due to chance factor. The
variation is due to chance factor are experimental error

In anova following assumptions are made
i) Model applied is linear ii) Various effects influencing response variable are additive
iii) Observations are independent and iv) Errors are normally distributed IID r.v.s

According to the number of factors variations those influence response variable experiment
yields are considered as i)One way classified data or ii)Two way classified data etc.
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12.2.1 One way ANOVA

Here Y the response variable is influenced by one factor,ususlly called as treatments

Model : yjis the response of jth experimental unit receiving ith treatment

yij= 1L +ai +&;j where i=1top andj=1tor, n=),7;

Assumptions 1)Model is additive 2), pis general mean

3) ifollows IN(0,02) 4) &ii are independent 5) ai effect of ith treatment is fixed effect.

The hypothesis we want to test regarding homogeneity of various treatment means in
population which reduces to

Ho: a1 = a2 =......... ap = 0 against H1: They differ significantly.
ANOVA table
Source df |S.S MSS F ratio

_vp Yi_¥? SStreatment MSStreatment
SStreatment=), i—1 T — -
: p SSerror

Between/treatment | p-1

Within/error n-p

+
Total n-1 Z z ) y?
Yij — n
J

i

If calculated F ratio > Fa p-1n-p,then Hois rejected. We conclude that treatments differ
significantly at confidence level a % (usually « =5% or 1%). MSSerror is treated as an
unbiased estimate of o 2.The test of significance of all treatments simultaneously may
exhibit significant differences in the means of treatment, but multiple comparison test for
pairs of treatments guarantees which treatment means differ significantly.

[)Critical difference C.D:

t(n_p) a. is two tailed a % value of t distribution with n-p d.f.C.D=. t(n_p) a. VMSSerror
)2 '2
|3_’i — }7]| > C.D The n we conclude ith treatment shows significant difference from jt
treatment
— SS
II)Tukeys’Honest significant difference test : |yi - yj| > a,p,np WWhere q a,p,np

is studentised range for which tables are available.

12.2.2 Two way ANOVA (r observations per cell)
Here there are two factors A an B say, influencing Y variable .The case with r observation
per cell is discussed here.

Model : yijk is the response of kth experimental unit receiving ith level of factor A and jth level
of factor B

yijk= W +ai +[j + Yij+ €&jk where i=1topj=1toq, k=1tor

Assumptions 1)Model is additive 2) pis general mean
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3) sijk follows IN(0,02) 4) €iik are independent5) ai effect of ith level of factor A and (jis
effect of jth level of factor B . Yjj is interaction effect between ith level of factor A and jth level
of and are fixed effects.

SStotal=SSA+SSB+SSAB+SSerror

ANOVA
Source d.f S.S MSS F ratio
Factor A p-1 SSA= Zp yl ¥z SSA Fa
pqr p—1
Factor B g-1 SSB—Z?zly'—i v SSB Fs
qr pqr q—1
Factor AB -1)(g-1 % 2 SSAB F
actor (p-1)(q-1) SSAB=Y Z?_lb _ ?_1& _ AB
=1 r =lar P-D@-1
2 2
‘?=1 Vi 4 Y=
J=tqr  par
Residual pq(r-1) MSresidual

22,2752, Zy”

Total pqr-1 y
ZEZM "

First test 1) Ho : Yij =0 for all i,

Fag =MSAB/MSerror, Fas > F a, (p-1)(q-1) ,pq(r-1) ,then conclude that there is interaction
between two factors.It makes no sense in carrying out following test. Rather we must held
one level of factor A constant and test Hosusing one way ANOVA. And we must held one
level of factor B constant and test Hoa using one way ANOVA .

2)Hoa: o1 =02 =ueviern ap = 0 against Hia: They differ significantly . FA =MSA/MSressidual
3)Hos: B1 = B2 =weerreenns B q= 0 against His: They differ significantly . Fs =MSB/ MSressidual

12.2.3 Two way ANOVA (one observations per cell)
Model : yjis the response unit receiving ith level of factor A and jth level of factor B

yij= WL +ai + j +€ijk where i=1 to p and j=1 to q, n=pq
SStotal=SSA+SSB +SSerror

ANOVA
Source d.f S.S MSS F ratio
Factor A p-1 SSASYP YE_ Y2 SsA- MSSA
=la  pq p—1 MSSerror
Factor B g-1 SSB=Y vi ¥2 SSB. MSSB
J=1 q  pq qg—1 MSSerror
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Error (p-1)(g- q 2 MSerror=
1) z Z Z yl-zjk - z Z T SSerror
e TS T AT | e

2

Total pg-1 ,
2.0, 2.0
kK i J

The hypothesis we want to test regarding homogeneity of various means of
i)factor A and ii)factor B in population which reduces to

iJHoa: o1 = a2 =.......... ap = 0 against Hia: They differ significantly .
ii)If calculated F ratio > Fa,p-1,n-1 ,then Hoais rejected. We conclude that means of levels of
factor A differ significantly at a %.

i)Hos: B1 = B2 =.......... B q= 0 against His: They differ significantly .
ii)If calculated F ratio > Fq,q-1,n-1 ,then Hogis rejected. We conclude that means of levels of
factor B differ significantly at a %.

R code for ANOVA

Examples 1: Th grade point average (GPA-4 point scale) of students participating
in college sports program are compared .The data are as under.

Football Tennis Hockey
3.2 3.8 2.6
2.6 3.1 1.9
2.4 2.6 1.7
2.4 3.9 2.5
1.8 3.2 1.9

Do different sports have significant effect on GPA? .Apply Tuckey’s multiple comparison
test.

Solution . Here we apply ANOVA on way as GPA are classified according to one factor =

sports

#data should be read treatment wise #To read treatments
>GPA=c(3.2,2.6,2.4,2.4,1.8,3.8,3.1,2.6,3.9,3.3,2.6,1.9,1.7,2.5,1.9)
>Sport=c(rep("Football",5),rep("Tennis",5),rep("Hockey",5))
>d=data.frame(Sport, GPA)

# anova oneway

>avl=aov (GPA~Sport,data=d)

>summary (avl)
Output:

Df Sum Sq Mean Sq F value Pr(>F)
Sport 2 3.929 1.9647 8.456 0.00511**
Residuals 12 2.788 0.2323

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * ' 1
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Interpretation: As F calculated is highly significant(**)Treatments differ significantly
sports person’s GPA differ according sport. We apply Tuckey’s test for comparing sports
pairwise.

>TukeyHSD (avl, "Sport",ordered=F, conf.level=0.95)

# One can also use plot(TukeyHSD(avl,"Sport"))

Output:

Tukey multiple comparisons of means 95% family-wise confidence level
Fit: aov(formula = GPA ~ Sport, data = d)$

Sport diff lwr upr p adj
Hockey-Football -0.36 -1.17329741 0.4532974 0.4860718
Tennis-Football 0.86 0.04670259 1.6732974 0.0381404
Tennis-Hockey 1.22 0.40670259 2.0332974 0.0046180

Interpretation: No sport shows significant difference in GPA means

Example2 : Four varieties of wheat are planted at 3 different locations and their yields
(units per plot)are recorded as below:.:

Varietyl Location 1 Location 2 Location 3
Location—

Variety1 14.3 7.6 19.2

Variety?2 13.4 3.9 12.6

Variety3 18.4 13.4 15.1

Carry out analysis to check whether different locations or different varieties have
significant effect on yield of wheat?..

Solution:

#data should be read variety wise
>yield=c(14.3,13.4,18.4,7.6,3.9,13.4,19.2,12.6,15.1)
>loc=c(rep("L1",3),rep("L2",3),rep("L3",3))
>variety=c("v1l",6"v2",6 "v3", "yi", ty2", "y3", "yl 2", "v3")
>result=aov(yield~ loc+variety)

>summary (result)

Output:

Df Sum Sq Mean Sq F value Pr(>F)
loc 2 103.79 51.89 6.389 0.0568
variety 2 49.79 24.89 065 0.1559
Residuals 4 32.49 8.12

Interpretation: The Calculated F ratio are not significant, as p value is >.05 The yield does
not change significantly as location changes. Even the differences in varieties do not have
significant influence on yield. Varieties do not differ significantly.

Example 3: An engineer suspects that surface finish of a metal part is influenced by type of
paint used and drying time.Drying times are selected by him are 20,25,30 minutes. and he



Analyzing and Visuo.lizing Data with R Software - A Practical Manual

Chapter 12 - Analysis of Varince (ANOVA) using R

randomly choses paint [, [I.Conducted experiment yielded following data analyse it. Is there
any interaction present between paint and drying time?

paintl Drying Times(minutes)
20 25 30
I 74,64,50 73,61,44 78,85,92
11 92,86,68 98,73,88 66,45,85
Solution:

DT=c(74,64,50,92,86,68,73,61,44,98,73,88,78,85,92,66,45,85)
paint=c(rep("I",3),rep("II",3))

DRT1=c(paint)

DRT2=c(paint)

DRT3=c(paint)

DRT=c("DRT1","DRT2", "DRT3")

d=data.frame(DT,paint,DRT)

> fit=aov(DT~paint*DRT,data=d)

fit=aov(DT~paint*DRT,data=d)

> summary(fit)

V V.V VYV VYV

Output:

Df Sum Sq Mean Sq F value Pr(>F)
paint 1 356 355.6 1.250 0.285
DRT 2 421 210.4 0.740 0.498
paint:DRT 2 315 157.4 0.553 0.589
Residuals 12 3413 284 .4

Interpretation: Interaction between drying time and paint is not significant. we can
perform test for equality of paint means or for drying time means. Using error or error
+interaction S.S.

iJHoat o1 =02 = ap = 0 against Hia: paints differ significantly .ii)Since calculated F ratio
< Fa,p-1n-1,50 Hoais not rejected. We conclude that means of paints do not differ significantly
at confidence level 5 %.

ii) Hos: B1 = B2 =uucenuene B q= 0 against His: Drying times differ significantly .

ii) Here calculated F ratio < Fa,q-1,n-1,50 Hogis not rejected. We conclude that means of Dryng
timesdo not differ significantly at 5 %.




