Committed to Excellence

INSTRUCTION MANUAL

FLYWHEEL
P.O. BOX No. 42, OSAW Complex, Jagadhri Road

Ambala Cantt-133001 (Haryana) INDIA
Grams: INDOSAW
E-mail : ajaysagar@satyam.net.in
E-mail : eenquiry@indosaw.com

Experiment:- To determine the moment of inertia of flywheel about its own axis of rotation.
Apparatus :- 1. Flywheel, 2. Stop watch, 3. Thin cord, 4. 100g slotted weight, 5. Hanger, 6. Meter rod.

Theory :- If $\mathrm{h}=$ vertical distance through which the mass fall then
P.E $=$ K.E Of falling mass + rotational K.E of wheel + work done by friction

$$
m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I w^{2}+n_{1} f
$$

\qquad
$n_{1}=$ No of revolutions made by the winding of cord
$n_{1} f=$ Total energy spent in over comming friction after the cord leaves the axle. Let n 2 is the no of revolutions made by wheel before comming to rest. Hence K.E = $1 / 2$ Iw2 of wheel is spent in over comming the friction in n_{2} revolutions

$$
\frac{1}{2} I w^{2}=n_{2} f
$$

or

$$
\begin{equation*}
f=\frac{I}{2} \frac{w^{2}}{n_{2}} \tag{2}
\end{equation*}
$$

putting 2 in 1 and rearranging we get

$$
\begin{equation*}
I=\frac{\left(2 \mathrm{mgh}-m r^{2} w^{2}\right)}{w^{2}\left[1+\frac{n_{1}}{n_{2}}\right]} \tag{3}
\end{equation*}
$$

Average angular velocity $=\frac{(w+o)}{2}=\frac{w}{2}$
If $t=$ time teken by wheel before comming to rest , then average velocity,

$$
\frac{w}{2}=\text { total angle described in } \mathrm{n}_{2} \text { revolution } / \mathrm{t}
$$

$$
=\frac{\left(2 \pi n_{2}\right)}{t}
$$

or

$$
w=\frac{\left(4 \pi n_{2}\right)}{t}
$$

if $h=$ Height through which the mass m falls and is equal to length of cord wound on axle in n_{1} windingS

$$
\text { i.e } \quad h=2 \pi r n_{1} \text {-------------- } 5
$$

put 4 and 5 in eqn 3
on rearranging we get

$$
I=\frac{\left(m g r n_{1} t^{2}\right)}{\left(4 \pi n_{2}\left(n_{1}+n_{2}\right)\right)}-\frac{\left(m r^{2} n_{2}\right)}{\left(n_{1}+n_{2}\right)}
$$

Procedure :-

1 :- A mass of about 300 gm is fastened to one end of thread. A loop is made at the other end which is. fastened to the peg of wheel axle. The length of cord should be sufficent for the mass to just touch the ground.
2:- Rotate the flywheel in reverse direction so that the load rises and remain at the table level. 3:- Allow the mass to fall, and count the no of revolutions, say n till the mass touches the ground. 4:-The moment the mass touches the ground and the thread get detached, start the stop watch and count the no. of rotation n_{2} till the wheel stops. Record the time t.
5:- With the help of vernier calliper measure the diameter of the axel at several points, to find mean radius r.
6:- Repeat the exp with different weights.

OBSERVATION
Radius of axel $r=\mathrm{cm}$
height $\quad h=\quad \mathrm{cm}$
g

$$
=981 \mathrm{cms}^{-2}
$$

TABLE FOR $\mathrm{n}_{1}, \mathrm{n}_{2}$ AND t

SR. NO	Total load m applied (g)	No of revolutions before the mass detached n_{1}	No of revolutions to come to rest n_{2}	Time for n_{2} revolutions t	I by eq ${ }^{\mathrm{n} 6}$
1	300				
2	500				
3	700				

PRECAUTIONS:-

1:- The length of thread should be a little less than the height of the axel from the ground.
2:- The loop of cord slipped over the peg should be quite loose to prevent the rewinding of thread on axel in opposit direction, when the mass just reaches the floor.
3:- The thread should be wound uniformly on axel, ie neither the overlapping nor the gap between successive turns
4:- The cord should be thin enough. If not add half of it's half of its thickness to the radius of axel to get correct radius r.
5:- There should be whole no of turns of cord wound on axle. For this purpose, the windings of cord should be stopped at a point where the projection peg is horizontal.
6:- Start the stop watch when the cord just get detached from peg.
7:- The diameter of axel should be measured at different points in two mutually perpandicular directions.
8:- Before starting the experiment, put a little lubricant on the bearings of wheel.

ERROR:-

1:- n_{1} ans n_{2} may not be full numbers, this will introduce some error.
2:- Friction is not uniform for all speed as assumed.

TEST REPORT:

In equation (6) the value of 1st term is very very large as compared to the second term.

$$
\left(\frac{m r^{2} n^{2}}{n_{1}+n_{2}}\right) \text { and so the } 2 n d \text { term is neglected. }
$$

Hence, $\quad I=\frac{m g r n_{1} t^{2}}{4 \pi n_{2}\left(n_{1}+n_{2}\right)}$

Practical value of moment of Inertia

Mass suspended $\mathrm{m}=700 \mathrm{gm}$
Radius of axle $r=1 \mathrm{~cm}$
$\mathrm{n}_{1}($ no. of round of thread $)=15$
No. of revolutions before coming to rest $n_{2}=23.5$
Time for n_{2} revolutions $\mathrm{t}=16.97 \mathrm{sec}$.

$$
I=\frac{m g r n_{1} t^{2}}{4 \pi n_{2}\left(n_{1}+n_{2}\right)}=260771.9 \mathrm{gcm}^{2}
$$

Theoretical value:

Mass of flywheel, $\mathrm{M}=3.7 \mathrm{~kg}=3700 \mathrm{~g}$ (approx.)
Average radius of rim $\mathrm{R}=9 \mathrm{~cm}$
Theoretical value if whole mass were concentrated in rim I $=\mathrm{MR}^{2}=299700 \mathrm{~g} \mathrm{~cm}^{2}$

Concept plus:

Deviation of practical value from theoretical value is because whole of mass of flywheel is not concentrated in the rim.

