# Unit – III Air Pollution

By: Dr. Parveen Kumar Asst. Professor

# **C**ONTENTS

- Introduction
- What is air pollutants
- Sources of air pollution
- What happens to pollutants in The Atmosphere?
- Harmful effects
  - Living organisms
  - Plants





Prevention & control

## Introduction

- Air Pollution on Earth: Firewood use for cooking & heating
- Hippocrates has mentioned air pollution in 400 BC.
- King Edward I Ist antipollution law (1273) to restrict coal use.
- Los Angeles smog (1943) Photochemical smog
- London smog (1952) Sulphurous smog (4000 deaths/ 5 days).
- Air Pollution Control Act (1981)
- Environment Protection Act (1986)
- Motor Vehicle Act (1988)
- Bhopal Gas Tragedy (3<sup>rd</sup> December, 1984) Methy Isocyanide gas leakage from Union Carbide's pesticide plant.



# What is Air Pollution?

Air pollution - presence of undesirable solid or gaseous particles in the air in quantities that are harmful to human health and the environment.

Causes:

- **Natural**: Volcanoes, dust storm, forest fires, pollen grains etc.
- Anthropogenic: Pollutants from human activity fossil fuel burning
- Types of Air Pollutants:
  - Primary: Pollutants that are emitted directly from identifiable sources i.e. dust storms and volcanic eruptions, emission from vehicles, industries, etc.).
    - Contribute about **90%** of global air pollution.
    - **CO** & **CO**<sub>2</sub>, **NOx**, **SOx**, Volatile organic compounds (**HCs**), and Suspended Particulate Matter (**SPM**).
  - Secondary: Pollutants that are produced in the atmosphere when certain chemical reactions take place among the primary pollutants e.g. sulfuric acid, nitric acid, carbonic acid, etc.

2002 Brooks/Cole - Thomson Learning

#### **Primary Pollutants**

CO CO<sub>2</sub> SO<sub>2</sub> NO NO<sub>2</sub> Most hydrocarbons Most suspended particles

Secondary Pollutants  $SO_3$   $HNO_3$   $H_2SO_4$   $H_2O_2$   $O_3$  PANs Most NO<sub>3</sub> and  $SO_4^-$  salts

Natural

Sources

Mobile

Stationary

# **Sources of Air Pollution**

- Carbon monoxide: A colourless, odorless and toxic gas
  - Produced when organic materials such as natural gas, coal or wood are incompletely burnt.
  - **Vehicular exhausts** single largest source
  - Poorly maintained vehicles with inadequate pollution control equipment release greater amounts of CO.
  - Natural processes can convert CO to harmless compounds.

### • Sulfur oxides:

- Produced when sulfur containing fossil fuels are burnt.
- Sulphurous smog

### Nitrogen oxides:

- **Found in vehicular exhausts.**
- Involved in production of secondary air pollutants O<sub>3</sub>, Peroxyacetyl nitrate (PAN) (Photochemical smog)

## Hydrocarbons (VOCs)

- □ Group of compounds consisting of carbon and hydrogen atoms.
- Either evaporate from fuel supplies or are remnants of fuel that did not burn completely.
- □ Form secondary pollutants Photochemical smog.

### **Control**:

- ✓ Using higher  $O_2$  in fuel-air mixture.
- ✓ Using valves to prevent the escape of gases.
- ✓ Fitting of catalytic converters in automobiles

## Particulates:

- Small pieces of solid material (smoke particles from fires, bits of asbestos, dust particles and ash from industries) dispersed into the atmosphere.
- Effects soot, carcinogenic (cancer causing) effects.
- Accumulate in lungs and interfere with exchange of gases.

#### Types of particulates

| Term    | Meaning                                                                                                                             | Examples                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Aerosol | General term for particles suspended in air                                                                                         | Sprays from pressurized cans                   |
| Mist    | Aerosol consisting of liquid droplets                                                                                               | Sulfuric acid mist                             |
| Dust    | Aerosol consisting of solid particles that are blown into<br>the air or are produced from larger particles by grinding<br>them down | Dust storm                                     |
| Smoke   | Aerosol consisting of solid particles or a mixture of solid<br>and liquid particles produced by chemical reaction such<br>as fires  | Cigarette smoke, smoke<br>from burning garbage |
| Fume    | Generally means the same as smoke but often applies specifically to aerosols produced by condensation of hot vapors of metals.      | Zinc/lead fumes                                |
| Plume   | Geometrical shape or form of the smoke coming out of a chimney                                                                      |                                                |
| Fog     | Aerosol consisting of water droplets                                                                                                |                                                |
| Smog    | Term used to describe a mixture of smoke and fog.                                                                                   |                                                |

- Indoor air pollution: infiltration of polluted outside air and from various chemicals used or produced inside buildings.
- Outdoor air pollution: Traffic and factories, etc.
- Both indoor and outdoor air pollution are equally harmful.



## What Happens to Pollutants in The Atmosphere?

### • Once pollutants enter the troposphere:

- Transported downwind
- Diluted by the large volume of air
- Physico-chemical transformation
- Removed from atmosphere by rain rain or snow falls to the earth's surface.

## Meteorological conditions:

- Topography
- Atmospheric stability
- Wind velocity





**Smog Formation** 



**Meteorology & Pollution Dispersion** 

STRONG BREEZE

## **Effects of Air Pollution on Living Organisms**

- Respiratory system breakdown natural defenses lung cancer, asthma, chronic bronchitis and emphysema.
- Elderly people, infants, pregnant women and people with heart disease or respiratory diseases are especially vulnerable.
- Cigarette smoking greatest exposure to CO. Exposure to even 0.001 % of CO for several hours can cause coma and even death (Carboxy Haemoglobin). Impairs perception and thinking, headaches, drowsiness, dizziness and nausea.
- Sulfur dioxide irritates respiratory tissues, bronchitis, sulfur-containing acids & acidic particles which are very corrosive to lung.
- Nitrogen oxides especially NO<sub>2</sub> irritate lungs, asthma or chronic bronchitis, respiratory infections influenza or common colds.
- Suspended particles bronchitis and asthma, Long exposure chronic respiratory disease and cancer.
- Volatile organic compounds benzene, formaldehyde, and toxic particulates (lead & cadmium) can cause mutations, reproductive problems or cancer.
- **Ozone** a component of photochemical smog causes coughing, chest pain, breathlessness and irritation of the eye, nose and the throat.

#### **Effects on Plants:**

- Gaseous pollutants enter leaf pores and damage leaves of crop plants.
- Break down waxy coating that prevent excessive water loss and leads to damage from diseases, pests, drought and frost.
- Interferes with photosynthesis and plant growth
- Reduces nutrient uptake
- Causes leaves to turn yellow, brown or drop off altogether.
- Sulphur dioxide flower buds become stiff, hard, and fall from the plants.

#### Effects of air pollution on materials:

- Break down exterior paint on cars and houses.
- Discolour monuments, historic buildings, & marble statues.

## **Effects on Troposphere**

- Ozone layer depletion Ozone hole
- Green house effect Global warming
- Climate change
- Acid rain
- Smog

## **Prevention and Control**

### **1.** Preventive techniques

- Greater height of chimney discharge of pollutants far away from ground.
- Industry location as per topography & wind direction
- Substitution of raw material
- Reducing the use of fossil fuels
- Improving the quality of vehicular fuel
- Increasing the use of renewable energy
- 2. Effluent control devices for cleaning polluted air
  - Scrubbers Polluted air passed through water or chemical solution
  - Dry and wet collectors spray towers
  - Bag filters
  - Electrostatic precipitator

## Ambient air quality standards in India developed by the Central Pollution Control Board

| Area Category            | SPM µg/m3 | SO2 µg/m3 | Co µg/m3 | NOx µg/m3 |
|--------------------------|-----------|-----------|----------|-----------|
| Industrial and mixed use | 500       | 120       | 5000     | 120       |
| Residential and rural    | 200       | 80        | 2000     | 80        |
| Sensitive                | 100       | 3         | 1000     | 30        |





## References

• E. Bharucha, Environmental Studies for Undergraduate Students.

# Thank you for attention!!!

# 1. Which of the following air pollution control device has maximum efficiency?

- a) Electrostatic precipitator
- b) Dynamic precipitator
- c) Spray tower
- d) Wet cyclonic scrubber

2. Which gas is mainly produced due to incomplete burning of wood?

- a) CO
- **b**) SO2
- c) NO2
- d) NO3

# 3. Which of the following is a secondary air pollutant?

- a) SPM
- b) PAN
- c) SO2
- d) NO2

# 4. The permissible limit for NOx in residential area is.....µg/m3.

- a) 60
- **b**) 30
- **c)** 80
- d) 90

## 5. Which is a Green House Gas:

- a) CO
- **b**) CH4
- c) H2O vapour
- d) a & b
- e) b & c