5. Join I^{\prime}. II'. III' $\mathrm{IN}^{\prime \prime}$ and I^{\prime} mutuallv, be straight lines. to obtain the section and draw section $14.12-01$ lines in the area in section
Sectan of drid $2 \mathrm{~g}, \mathrm{Q}-1$
PROBLEM 14.12 I right circular cone diameter of hase 's mintid height 68 mm . lies on one of its dements in HP with its axis parallel to IP A vertical secton plane parallel to the $1 P$ and 10 mm awan from the aris cuts the cone Dran the top view and retional fromt view of the cut cone
SOLUTION: Refer Fig. 14.12.
6. Draw the projections of the cone satisfying the given conditions. as shown.
7. Draw the cutting plane line HT. which is the horizontal trace of the section plane, at a distance of 10 mm and parallel to the axis in top view.
8. The cutting plane line HT cuts the ellipse for the base rim at a and g. and elements 02, 03. o4. 05 and 06 at points b, c, d, e, and f in the final top view.
9. Project the points a and \mathbf{g} vertically upwards to points \mathbf{a}^{\prime} and \mathbf{g}^{\prime} lying on the projection of the base rim in front view. Also project points \mathbf{b}, \mathbf{c}, d, e, and f on the final front view of the corresponding elements $0^{\prime} 2^{\prime}, 0^{\prime} 3^{\prime}$ etc. As \mathbf{b}^{\prime}, $c^{\prime}, d^{\prime}, e^{\prime}, f$.
10. Join points $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f$, and g^{\prime} by a smooth curve, as the cone is a solid of revolution. Draw section lines in this sectioned area.
11. Fair out the view for the cut cone (leaving the projections for cut away portion as thin double chain lines).

Pig. 14.12. its true shape and size
7. It should be noted, that as section is projected on a plane parallel to the section plane, it shows

PROBLEM 14.13. A' right circular cylinder, base diameter 40 mm and height 65 mm , is lying on HP on one of its elements, such that its axis is inclined to VP at $30^{\circ} . A$ vertical section plane, parallel to the $V P$, cuts the cylinder meeting its axis at a distance of 7 mm from its end face away from the $V P$. Draw the sectional front view and top view of the cut cylinder.
SOLUTION: Refer Fig. 14.13. The procedure followed to solve this problem is same as explained in problem 12. The interpretation of the solution is left to the reader.

14.9. SECTION PLANE PERPENDICULAR TO VP AND INCLINED TO HP

A section plane perpendicular to VP and inclined to HP is called an auxiliary inclined plane, AIP. It is represented by its vertical trace VT drawn in front view, as shown in Fig. 14.14. Its HT is purposely omitted as it is perpendicular to the $X Y$ line and serves no useful purpose in drawing the
sectional view. The angle at which such a plane is inclined to the HP is made by its VT with the XY line. The projection of such a section in front view is a line, coincident with the cutting plane line VT. Whereas, its top view is a geometric figure. In other words we can say that such a section plane gives sectional top view.

Further it should be noted here, that as the section plane and hence the section is inclined to the HP, its projection on the HP does not show its true shape and size. The area of section is smaller than that of its true section exposed by the section plane, as seen perpendicular to the cutting plane. and is called apparent section.

The true shape of such a section is found by auxiliary plane method, as discussed in chapter 11. In other words, we draw the auxiliary projection of the section on an auxiliary plane taken parallel to the section plate as sHown ir Fig. 14.15. edge of base 251m and height 55 mm . rests on its base; (1) on ground plane, (2) on HP, with one of its base edges parallel to VP. A section plane perpendicular to $V P$ and inclined to HP (or ground plane) at 30°.

True Shape of Section

Fig. 14.13. First Angle Projection

Fig. 14.14. (b) First Angle Projection
cuts the pyramid and passes through the centre of its axis. Draw its front view and sectional top view.
SOLUTION: Refer Fig. 14.14.

1. Draw, in light lines, the projections of the pyramid in the given position.
2. Then draw the vertical trace VT of the section plane, inclined to XY or GL at 30°.
3. The slant edge in front view $0^{\prime} 1^{\prime}$ is cut by the section plane at a^{\prime}. The projection a of this point in top view lies vertical, (1) above \mathbf{a}^{\prime}, (2) below a^{\prime} and on the top view 01.
4. Similarly plot, in top view, other points of intersection $\mathbf{b}^{\prime}, \mathbf{c}^{\prime}, \mathbf{d}^{\prime}, \mathbf{e}^{\prime}$, and \mathbf{f}^{\prime} of the cutting plane line with the other slant edges $0^{\prime} 2^{\prime}, 0^{\prime} 3^{\prime}$,
$0^{\prime} 4^{\prime}, 0^{\prime} 5^{\prime}$ and $0^{\prime} 6^{\prime}$.
5. Join points $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$ and \mathbf{f} by straight lines, as shown, to obtain the projection of the section in top view. Draw section lines in this closed
area. area.
6. Finish the views by fairing out the lines on the projections, representing the cut pyramid only. The projections for the cut away portion of the pyramid should be left as thin lines or preferably drawn in thin short double chain lines.

PROBLEM 14.15. A pentagonal pyramid, side of base 25 mm and height 50 mm , rests on its base on $H P$ with one of its base edges perpendicular to VP. An auxiliary inclined plane (AIP), inclined to HP al 45° cuts the pyramid, bisecting its axis. Draw its front viev: sectional top view and true shape of the section.
SOLUTION: Refer Fig. 14.15.

Fig. 14.15.
d^{\prime}, e^{\prime} on their corresponding edges $0^{\prime} 5^{\prime}, 0^{\prime} 4,0$, . $0^{\prime} 1^{\prime}, 2^{\prime} 3^{\prime}$, and $1^{\prime} 2^{\prime}$ in the final front view. Join $a^{\prime} b^{\prime} \mathbf{c}^{\prime} \mathbf{c}^{\prime} d^{\prime} \mathbf{e}^{\prime}$ by straight lines and draw section lines in this area to complete the section in front view. Finish the views by fairing out the projections of the truncated pyramid and leaving the projections of the cut away part of it as light thin short double chain lines as shown.
PROBLEM 14.27. A righ Pregular pentagonal prism, side of base 25 mm and height 65 mm , rests on an edge of its base on $H P$, such that the rectangular face containing the base edge is inclined to the $H P$ at 30°, (or the base inclined at 60° to the $H P$). A section plane perpendicular to the HP and inclined to the VP at 45° cuts the prism such that the long edge farthest away from the $V P$ is bisected. Draw the top view and sectional front view of the cut prism.
SOLUTION: Refer Fig. 14.27.

FIg. 14.27.
Draw, in light lines, the projections of the prism. The long edge farthest away from the VP is farthest away from the $X Y$ line in the top view. Therefore, through the mid-point of the edge $\mathbf{b}_{1} 2_{1}$ in the top view, draw the section plane line HT , inclined to
the YY line at 45°.

The point of intersection of the cutting plane line $H T$ with the edge $b_{1} 2_{1}$ in the top view when projected up to be on $\mathbf{b}^{\prime} 2^{\prime}$ in front view, gives point II' lying on the boundary of the section there. Similarly other points of intersection of the cutting plane line with the other base and long edges,
front view, give the remaining porime boundary of the section in front vies

Join $\mathrm{I}^{\prime}, \mathrm{II}^{\prime}$. III', IV ${ }^{\prime}$ and V^{\prime} by stralght and draw section lines in the area enclisery these points. Finish the views by making fot: dark, (thick 100%) and thin (33%) as sthery, PROBLEM 14.28. A right circular cine, darn of base 60 mm and height 70 mm . resis on in is her HP. A section plane perpendicular 10 min im to $V P$ at 45° cuts the cone and is 11 mm in fromm
axi. Draw its top view, sectional front view, and shape of the section.
SOLUTION: Refer Fig. 14.28.

Fig. 14.28.

1. Draw the projections of the cone, in the: position, in light lines.
2. Draw, with $\mathbf{0}$ as centre, a circle arc of 10 radius in the top view. Draw the cutring? line HT inclined at 45° to the XY liat tangential to this arc in top view.
3. Project the points of intersection a_{1}, b, 6^{1} and f of this cutting plane line with generators and base rim in, the top their respective positions $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, c^{\prime}, d^{\prime}, b^{\prime}$ \mathbf{f}^{\prime} on the front elevation of their ${ }^{2}$ generators and base rim, as the $c^{a^{2 e^{2}}}$ me
shape of the section.

14.10. SECTION PLANE PERPENDICULAR TO HP AND INCLINED TO VP (AVP)

Figure 14.24, shows a right regular hexagonal pyramid, resting on its base on ground plane, cut by a section plane perpendicular to HP and inclined to VP. It can be seen in this figure that such a plane is represented by its horizontal trace HT, drawn in the top view, inclined to XY line at the same angle at which the plane is inclined to VP. Its VT is perpendicular to the XY line and is omitted as it serves no useful purpose in the solution of problems of this type.

The cutting or section plane is passed through the top view and hence the top view of the section is a line coincident with the HT. The projection of the section in the front view is an apparent section, the as the cutting plane is inclined to the VP.

PROBLEM
 14.24. A right circular hexagonal

 stramia edge of base 25 mm and height 55 mm , rests or its base; on $H P$, with one of its sides parallel to $V P$. 4 section plane perpendicular to HP and inclined toFig. 14.23.
${ }_{e} V P$ at 30° cuts the pyramid and is 8 mm away from e axis. Draw its top view and sectional front view: OLUTION: Refer Fig. 14.24.

Draw, in light lines, the projections pyramid in the given position and label the points, as shown.

Fig. 14.24

