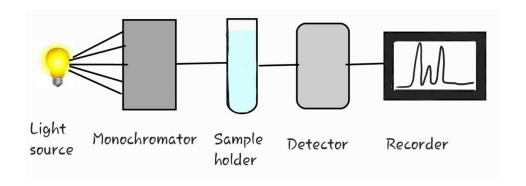

LAB MANUAL: EXPERIMENT 1

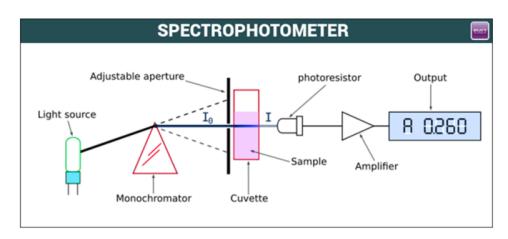
Aim: To verify Lambert-Beer's law using a given solution of potassium permanganate at the wavelength of its maximum absorption (λ_{max}) and consequent determination of the unknown concentration of a solution of potassium permanganate.

Theory:

The Beer-Lambert law states that the absorbance of a solution is directly proportional to the concentration of the absorbing species in the solution and the path length. Thus, for a fixed path length (cuvette length), UV/Vis spectroscopy can be used to determine the concentration of the absorber in a solution. The absorbance changes with concentration. Thus, a higher concentration of the colored solution absorbs more light (and transmits less) than a solution of lower concentration.


$$\log (I_o/I_t) = A = \varepsilon c 1$$

According to Beer-Lambert law,


 $log(I_o/I_t) = A = \epsilon cl$ where I_o and I_t are the incident and transmitted intensities,

A = absorbance and ϵ is a constant i.e. absorptivity (also called the extinction coefficient).

If the concentration is measured in molL⁻¹, the absorptivity is called molar absorptivity. $A = \varepsilon cl$. At constant length $A \infty c$

Working principle of spectrophotometer

Spectrophotometer

Cuvette

Requirements:

spectrophotometer, cuvette, six test tubes, Measuring cylinder, 10 mL pipette, $0.001M\ KMnO_4$ solution, distilled water, test tube rack, and tissues (preferably lint-free).

Procedure & observation table:

Step 1: To record the absorbance of KMnO₄ solution at different wavelengths to determine the light wavelength for its maximum absorption (λ_{max}):

- (a) Prepare 100 mL of 0.001M KMnO₄ (**Molecular weight 158.03** gm/mol) solution in distilled water.
- (b) Label five clean, dry, test tubes 1-5.
- (c) Use a 10 mL pipette to prepare five standard solutions according to Table 1.
- (d) Thoroughly mix each solution.
- (e) Calibrate the spectrophotometer with respect to the blank solution i.e. distilled water.
- (f) Fill any one of the prepared solutions (1-5) up to a certain level in the cuvette of the spectrophotometer.
- (g) Record the absorbance of the respective solution at different wavelengths as mentioned in Table 2.
- (h) Plot the absorbance data in the graph paper with respect to the wavelength and calculate the light wavelength for its maximum absorption (λ_{max}) in KMnO₄.

Table 1:

Test-tube	0.001M KMnO ₄ (mL)	Distilled water (mL)	Concentration (M)
1	1	9	
2	2	8	
3	3	7	
4	4	6	
5	5	5	

Table 2: The solution of the **No.** test tube was chosen for the determination of the light wavelength for its maximum absorption (λ_{max}).

Entry	Wavelength (λ in nm)	Absorbance
1		
2		
3		
4		
5		

Step 2: To record the absorbance of different concentrations of solutions at the specified λ_{max} :

- (a) Set the operating wavelength of the spectrophotometer in the range of absorption maxima of aqueous KMnO4 solution (λ_{max}).
- (b) Calibrate the spectrophotometer with respect to the blank solution i.e. water.
- (c) Fill each of the solutions up to a certain level in the cuvette of the spectrophotometer.
- (d) Record the absorbance of the respective solutions as stated in Table 3.
- (e) Plot the absorbance data in the graph paper with respect to the concentration which should be a straight line passing through the origin.

Table 3:

Entry	Test-tube	Absorbance
1	1	
2	2	
3	3	
4	4	
5	5	

Step 3: Determination of the unknown concentration of a given potassium permanganate solution:

- (a) Fill the solutions up to a certain level in the cuvette of the spectrophotometer.
- (b) Record the absorbance of the given solution of unknown concentration.
- (c) Plot the absorbance data in the same graph obtained above (ideally it should be on the same straight line obtained from the plot of step 1)
- (d) Draw a perpendicular line from the absorbance point to the concentration axis.
- (e) Note down the corresponding unknown concentration.

Conclusion:

- 1) The light wavelength for its maximum absorption (λ_{max}) is found to be nm.
- 2) The concentration of the unknown solution was found to be M

Precautions:

- (a) Always mix the standard solutions properly.
- (b) Wipe the outside of the cuvette every time with a lint-free tissue.
- (b) Handle cuvettes only by the top edge of the ribbed sides.
- (c) Dislodge any bubbles by gently tapping the cuvette on a hard surface.
- (d) Always position the cuvette so the light passes through the clear sides.
- (e) Always set the light source of the instrument in the absorption maxima range of the given solution.